Betriebsanleitung

FLUXUS F736
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Einführung</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Sicherheitshinweise</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Allgemeine Sicherheitshinweise</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Bestimmungsgemäße Verwendung</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Nicht bestimmungsgemäße Verwendung</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Sicherheitshinweise für Benutzer</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Sicherheitshinweise für Betreiber</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Sicherheitshinweise für elektrische Arbeiten</td>
<td>9</td>
</tr>
<tr>
<td>2.7</td>
<td>Sicherheitshinweise für den Transport</td>
<td>10</td>
</tr>
<tr>
<td>2.8</td>
<td>Empfohlenes Vorgehen in Gefahrensituationen</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Grundlagen</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Messprinzip</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>Messanordnungen</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>Akustische Durchstrahlbarkeit</td>
<td>17</td>
</tr>
<tr>
<td>3.4</td>
<td>Ungestörtes Strömungsprofil</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Produktbeschreibung</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Messsystem</td>
<td>21</td>
</tr>
<tr>
<td>4.2</td>
<td>Bedienkonzept</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>Anzeige</td>
<td>23</td>
</tr>
<tr>
<td>4.4</td>
<td>Tastatur</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Transport und Lagerung</td>
<td>25</td>
</tr>
<tr>
<td>5.1</td>
<td>Transport</td>
<td>25</td>
</tr>
<tr>
<td>5.2</td>
<td>Lagerung</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Montage</td>
<td>26</td>
</tr>
<tr>
<td>6.1</td>
<td>Messumformer</td>
<td>27</td>
</tr>
<tr>
<td>6.2</td>
<td>Sensoren</td>
<td>30</td>
</tr>
<tr>
<td>6.3</td>
<td>Temperaturfühler</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Anschluss</td>
<td>59</td>
</tr>
<tr>
<td>7.1</td>
<td>Sensoren</td>
<td>60</td>
</tr>
<tr>
<td>7.2</td>
<td>Spannungsversorgung</td>
<td>72</td>
</tr>
<tr>
<td>7.3</td>
<td>Ausgänge</td>
<td>73</td>
</tr>
<tr>
<td>7.4</td>
<td>Eingänge</td>
<td>75</td>
</tr>
<tr>
<td>7.5</td>
<td>Temperaturfühler</td>
<td>77</td>
</tr>
<tr>
<td>7.6</td>
<td>Serviceschnittstellen</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>Inbetriebnahme</td>
<td>83</td>
</tr>
<tr>
<td>8.1</td>
<td>Einstellungen bei erster Inbetriebnahme</td>
<td>84</td>
</tr>
<tr>
<td>8.2</td>
<td>Einschalten</td>
<td>85</td>
</tr>
<tr>
<td>8.3</td>
<td>Programmzweige</td>
<td>85</td>
</tr>
<tr>
<td>8.4</td>
<td>Sprachauswahl</td>
<td>86</td>
</tr>
<tr>
<td>8.5</td>
<td>Initialisierung</td>
<td>86</td>
</tr>
<tr>
<td>8.6</td>
<td>Uhrzeit und Datum</td>
<td>86</td>
</tr>
<tr>
<td>8.7</td>
<td>Informationen zum Messumformer</td>
<td>87</td>
</tr>
</tbody>
</table>
1 Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Messung</td>
<td>88</td>
</tr>
<tr>
<td>9.1</td>
<td>Parametereingabe</td>
<td>88</td>
</tr>
<tr>
<td>9.2</td>
<td>Messeinstellungen</td>
<td>94</td>
</tr>
<tr>
<td>9.3</td>
<td>Starten der Messung</td>
<td>104</td>
</tr>
<tr>
<td>9.4</td>
<td>Anzeigen der Messwerte</td>
<td>107</td>
</tr>
<tr>
<td>9.5</td>
<td>Anzeigen der Parameter</td>
<td>110</td>
</tr>
<tr>
<td>9.6</td>
<td>Erneutes Anzeigen der Messwerte</td>
<td>111</td>
</tr>
<tr>
<td>9.7</td>
<td>Ausführen spezieller Funktionen</td>
<td>112</td>
</tr>
<tr>
<td>9.8</td>
<td>Stoppen der Messung</td>
<td>114</td>
</tr>
<tr>
<td>10</td>
<td>Fehlersuche</td>
<td>115</td>
</tr>
<tr>
<td>10.1</td>
<td>Probleme mit der Messung</td>
<td>116</td>
</tr>
<tr>
<td>10.2</td>
<td>Auswahl der Messstelle</td>
<td>117</td>
</tr>
<tr>
<td>10.3</td>
<td>Maximaler akustischer Kontakt</td>
<td>117</td>
</tr>
<tr>
<td>10.4</td>
<td>Anwendungsspezifische Probleme</td>
<td>117</td>
</tr>
<tr>
<td>10.5</td>
<td>Große Abweichungen der Messwerte</td>
<td>118</td>
</tr>
<tr>
<td>10.6</td>
<td>Probleme mit den Mengenzählern</td>
<td>118</td>
</tr>
<tr>
<td>10.7</td>
<td>Probleme bei der Wärmestrommessung</td>
<td>118</td>
</tr>
<tr>
<td>11</td>
<td>Wartung und Reinigung</td>
<td>119</td>
</tr>
<tr>
<td>11.1</td>
<td>Wartung</td>
<td>120</td>
</tr>
<tr>
<td>11.2</td>
<td>Reinigung</td>
<td>120</td>
</tr>
<tr>
<td>11.3</td>
<td>Kalibrierung</td>
<td>120</td>
</tr>
<tr>
<td>12</td>
<td>Demontage und Entsorgung</td>
<td>121</td>
</tr>
<tr>
<td>12.1</td>
<td>Demontage</td>
<td>122</td>
</tr>
<tr>
<td>12.2</td>
<td>Entsorgung</td>
<td>122</td>
</tr>
<tr>
<td>13</td>
<td>Anwendermodi</td>
<td>123</td>
</tr>
<tr>
<td>13.1</td>
<td>StandardUser-Modus</td>
<td>124</td>
</tr>
<tr>
<td>13.2</td>
<td>ExpertUser-Modus</td>
<td>128</td>
</tr>
<tr>
<td>13.3</td>
<td>SuperUser-Modus und SuperUser-erw.-Modus</td>
<td>132</td>
</tr>
<tr>
<td>14</td>
<td>Ausgänge</td>
<td>136</td>
</tr>
<tr>
<td>14.1</td>
<td>Konfigurieren eines Digitalausgangals Binärausgang</td>
<td>136</td>
</tr>
<tr>
<td>14.2</td>
<td>Konfigurieren eines Digitalausgangals Impulsausgang</td>
<td>139</td>
</tr>
<tr>
<td>14.3</td>
<td>Konfigurieren eines Digitalausgangals Frequenzausgang</td>
<td>142</td>
</tr>
<tr>
<td>15</td>
<td>Eingänge</td>
<td>143</td>
</tr>
<tr>
<td>15.1</td>
<td>Konfigurieren eines Eingangs</td>
<td>143</td>
</tr>
<tr>
<td>15.2</td>
<td>Zuordnen eines Eingangs</td>
<td>147</td>
</tr>
<tr>
<td>16</td>
<td>Messwertspeicher</td>
<td>148</td>
</tr>
<tr>
<td>16.1</td>
<td>Konfigurieren des Messwertspeichers</td>
<td>148</td>
</tr>
<tr>
<td>16.2</td>
<td>Löschen des Messwertspeichers</td>
<td>152</td>
</tr>
<tr>
<td>16.3</td>
<td>Informationen zum Messwertspeicher</td>
<td>152</td>
</tr>
<tr>
<td>17</td>
<td>Datenübertragung</td>
<td>153</td>
</tr>
<tr>
<td>17.1</td>
<td>Serviceschnittstellen</td>
<td>153</td>
</tr>
<tr>
<td>17.2</td>
<td>Prozessschnittstelle</td>
<td>154</td>
</tr>
</tbody>
</table>
18 Erweiterte Funktionen .. 155
 18.1 Mengenzähler .. 155
 18.2 FastFood-Modus ... 158
 18.3 Verrechnungskanäle .. 159
 18.4 Diagnose mit Hilfe der Snap-Funktion 163
 18.5 Ändern des Grenzwerts für den Rohrinnendurchmesser 164
 18.6 Ferngesteuerte Funktionen 165
 18.7 Ereignistrigger .. 167
 18.8 Ereignisprotokoll .. 172
19 Einstellungen .. 173
 19.1 Dialoge und Menüs ... 173
 19.2 Messmodi ... 176
 19.3 Messeinstellungen ... 176
 19.4 Maßeinheiten .. 177
 19.5 Material- und Fluidauswahlliste 177
 19.6 Verwenden von Parametersätzen 178
 19.7 Kontrast einstellen .. 179
 19.8 HotCodes .. 179
 19.9 Tastensperre .. 180
20 Wärmestrommessung (Option) 182
 20.1 Berechnen des Wärmestroms 182
 20.2 Festlegen der Messgröße und der Maßeinheit 183
 20.3 Applikation und Sensorpositionierung 183
 20.4 Zuordnen der Temperatureingänge 184

Anhang
 A Menüstruktur .. 185
 B Maßeinheiten .. 203
 C Referenz ... 207
 D Rechtliche Informationen – Open-Source-Lizenzen 212
 E Konformitätserklärungen .. 216
1 Einführung

Diese Betriebsanleitung wurde für die Anwender des Ultraschall-Durchflussmessgeräts FLUXUS geschrieben. Sie enthält wichtige Informationen über das Messgerät sowie darüber, wie es korrekt zu handhaben ist und wie Beschädigungen vermieden werden können. Machen Sie sich mit den Sicherheitshinweisen vertraut. Sie müssen die Betriebsanleitung vollständig gelesen und verstanden haben, bevor Sie das Messgerät einsetzen.

Alle Arbeiten am Messgerät dürfen nur von autorisiertem und befähigtem Personal ausgeführt werden, das Risiken und mögliche Gefährdungen erkennen und vermeiden kann.

Darstellung der Warnhinweise

Die Betriebsanleitung enthält Warnhinweise, die folgendermaßen gekennzeichnet sind:

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art und Quelle der Gefährdung</td>
</tr>
</tbody>
</table>
Gefahr mit einem hohen Risikograd, die zu schweren oder tödlichen Verletzungen führen kann, wenn sie nicht vermieden wird
→ Maßnahmen zur Vermeidung

<table>
<thead>
<tr>
<th>Warnung!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art und Quelle der Gefährdung</td>
</tr>
</tbody>
</table>
Gefahr mit einem mittleren Risikograd, die zu mäßigen oder schweren Verletzungen führen kann, wenn sie nicht vermieden wird
→ Maßnahmen zur Vermeidung

<table>
<thead>
<tr>
<th>Vorsicht!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art und Quelle der Gefährdung</td>
</tr>
</tbody>
</table>
Gefahr mit einem geringen Risikograd, die zu geringfügiger oder mäßiger Verletzung führen kann, wenn sie nicht vermieden wird
→ Maßnahmen zur Vermeidung

<table>
<thead>
<tr>
<th>Wichtig!</th>
</tr>
</thead>
</table>
Dieser Text enthält wichtige Hinweise, die beachtet werden müssen, um Sachschäden zu vermeiden.

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
</table>
Dieser Text enthält wichtige Hinweise zur Benutzung des Messgeräts.

Aufbewahrung der Betriebsanleitung

Die Betriebsanleitung muss am Einsatzort des Messgeräts immer griffbereit sein. Sie muss dem Benutzer jederzeit zur Verfügung stehen.

Benutzerbeurteilung

Es wurden alle Anstrengungen unternommen, um die Korrektheit des Inhalts dieser Betriebsanleitung zu gewährleisten. Wenn Sie dennoch fehlerhafte Informationen finden oder Informationen vermissen, teilen Sie uns diese mit.

Für Vorschläge und Bemerkungen zum Konzept sowie über Ihre Erfahrungen beim Einsatz des Messgeräts sind wir dankbar. Wenn Sie Vorschläge zur Verbesserung der Dokumentation und insbesondere dieser Betriebsanleitung haben, teilen Sie uns diese mit, damit wir sie bei Neuauflagen berücksichtigen können.

Urheberrecht

Der Inhalt der Betriebsanleitung kann jederzeit verändert werden. Alle Urheberrechte liegen bei der FLEXIM GmbH. Ohne schriftliche Erlaubnis von FLEXIM dürfen von dieser Betriebsanleitung keine Vervielfältigungen jeglicher Art vorgenommen werden.
2 Sicherheitshinweise

2.1 Allgemeine Sicherheitshinweise

Lesen Sie die Betriebsanleitung vor dem Beginn der Arbeiten vollständig und sorgfältig durch. Das Nichtbeachten der Anweisungen, insbesondere der Sicherheitshinweise, gefährdet die Gesundheit und kann zu Sachschäden führen. Wenn Sie Fragen haben, wenden Sie sich an FLEXIM. Beachten Sie bei Installation oder Betrieb des Messgeräts die Umgebungs- und Installationsbedingungen, die in der Dokumentation vorgegeben sind.

Erklärung der Symbole auf dem Messumformer und dem Zubehör:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gleichstrom</td>
</tr>
<tr>
<td></td>
<td>Anschluss für Potentialausgleich/Erdung</td>
</tr>
<tr>
<td></td>
<td>Schutzleiteranschluss</td>
</tr>
<tr>
<td></td>
<td>Elektrogeräte müssen getrennt entsorgt werden. Falls erforderlich, sind für die Entsorgung zusätzlich Gefahrstoffe angegeben.</td>
</tr>
<tr>
<td></td>
<td>Warnung! Ein elektrischer Schlag ist möglich</td>
</tr>
<tr>
<td></td>
<td>Betriebsanleitung beachten</td>
</tr>
<tr>
<td></td>
<td>Warnung! Sicherheitshinweise in der Herstellerdokumentation beachten</td>
</tr>
</tbody>
</table>

2.2 Bestimmungsgemäße Verwendung

- Zur bestimmungsgemäßen Verwendung sind alle Anweisungen in dieser Betriebsanleitung einzuhalten.
- Jede über die bestimmungsgemäße Verwendung hinausgehende oder andersartige Benutzung wird nicht durch die Garantie abgedeckt und kann zu einer Gefährdung führen. Für daraus entstehende Schäden haftet allein der Betreiber oder Benutzer.
- Die Messung erfolgt ohne direkten Kontakt mit dem Fluid im Rohr. Das Strömungsprofil wird nicht beeinflusst.
- Die Sensoren werden mit der mitgelieferten Sensorbefestigung am Rohr befestigt.
2.3 Nicht bestimmungsgemäße Verwendung

Als nicht bestimmungsgemäße Verwendung im Sinne einer Fehlanwendung gilt:

• Arbeiten am Messgerät ohne Einhaltung aller Anweisungen in dieser Betriebsanleitung
• Verwendung von Gerätekombinationen aus Messumformer, Sensoren und Zubehör, die nicht von FLEXIM vorgesehen sind
• Montage von Messumformer, Sensoren und Zubehör im explosionsgefährdeten Bereich, wenn sie nicht für den entsprechenden Bereich zugelassen sind
• Durchführung von Arbeiten am Messgerät (z.B. Montage, Demontage, Anschluss, Inbetriebnahme, Bedienung, Wartung und Instandhaltung) von nicht autorisiertem und befähigtem Personal
• Lagerung, Installation oder Betrieb des Messgeräts außerhalb der vorgegebenen Umgebungsbedingungen (siehe Technische Spezifikation)

2.4 Sicherheitshinweise für Benutzer

Arbeiten am Messgerät dürfen nur von autorisiertem und befähigtem Personal durchgeführt werden. Beachten Sie die Sicherheitshinweise in der Betriebsanleitung. Für die technischen Daten von Messumformer, Sensoren und Zubehör siehe die Technische Spezifikation.

• Halten Sie die am Einsatzort geltenden Sicherheits- und Unfallverhütungsvorschriften ein.
• Verwenden Sie nur die mitgelieferten Befestigungen und Sensoren sowie das vorgesehene Zubehör.
• Tragen Sie stets die erforderliche persönliche Schutzausrüstung.

2.5 Sicherheitshinweise für Betreiber

• Der Betreiber hat das Personal entsprechend seinem Einsatz zu qualifizieren. Er muss dem Personal die erforderliche persönliche Schutzausrüstung bereitstellen und das Tragen der Schutzausrüstung verbindlich anweisen. Er wird empfohlen, eine Gefährdungsbeurteilung des Arbeitsplatzes durchzuführen.
• Neben den Sicherheitshinweisen in dieser Betriebsanleitung müssen die für den Einsatzbereich von Messumformer, Sensoren und Zubehör geltenden Sicherheits-, Arbeitsschutz- und Umweltschutzvorschriften eingehalten werden.
• Das Messgerät ist bis auf die im Kapitel 11 genannten Ausnahmen wartungsfrei. Komponenten und Ersatzteile dürfen nur von FLEXIM ersetzt werden. Der Betreiber muss regelmäßige Kontrollen auf Veränderungen oder Beschädigungen durchführen, die eine Gefährdung darstellen können. Wenn Sie Fragen haben, wenden Sie sich an FLEXIM.
• Halten Sie die Angaben zu Montage und Anschluss von Messumformer, Sensoren und Zubehör ein.

2.6 Sicherheitshinweise für elektrische Arbeiten

• Bevor Arbeiten am Messumformer (z.B. Montage, Demontage, Anschluss, Wartung, Instandhaltung) durchgeführt werden, muss der Messumformer von der Spannungsversorgung getrennt werden. Das Entfernen der internen Gerätesicherung ist dafür nicht ausreichend.
• Elektrische Arbeiten dürfen nur bei ausreichenden Platzverhältnissen durchgeführt werden.
• Öffnen Sie den Messumformer nur bei sicheren Umgebungsbedingungen (z.B. Luftfeuchtigkeit < 90 %, keine leitfähigen Verschmutzungen, keine explosive Atmosphäre). Andernfalls müssen zusätzliche Schutzmaßnahmen durchgeführt werden.
• Die Schutzart des Messumformers ist nur gewährleistet, wenn alle Kabel mit Hilfe der Kabelverschraubungen dicht montiert und das Gehäuse fest verschraubt ist.
• Die elektrischen Verbindungen sind regelmäßig auf Zustand und festen Sitz zu prüfen.
• Der Anschluss darf nur an Netze bis Überspannungskategorie II erfolgen. Beachten Sie beim Anschluss der Ein- und Ausgänge sowie der Spannungsversorgung die Installationshinweise, insbesondere die Klemmenbelegung.
• Die Frontplatte darf nicht demontiert werden. Der Messumformer enthält keine Komponenten, die vom Benutzer gewartet werden müssen. Für Reparatur- und Servicearbeiten wenden Sie sich an FLEXIM.
• Beachten Sie die Sicherheits- und Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel.

2.7 Sicherheitshinweise für den Transport

Abb. 2.1: Messumformer

2.7 Sicherheitshinweise für den Transport

<table>
<thead>
<tr>
<th>Vorsicht!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnung vor Verletzungen durch herabfallende Gegenstände</td>
</tr>
<tr>
<td>Ungesicherte und herabfallende Gegenstände können zu schweren Verletzungen führen.</td>
</tr>
<tr>
<td>→ Sichern Sie alle Komponenten gegen Herunterfallen beim Transport.</td>
</tr>
<tr>
<td>→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.</td>
</tr>
<tr>
<td>→ Beachten Sie die geltenden Vorschriften.</td>
</tr>
</tbody>
</table>

• Wenn Sie beim Auspacken einen Transportschaden feststellen, wenden Sie sich umgehend an den Lieferanten oder FLEXIM.
• Bei dem Messumformer handelt es sich um ein empfindliches elektronisches Messgerät. Vermeiden Sie Stöße oder Schläge.
• Wählen Sie zur Ablage von Messumformer, Sensoren und Zubehör einen festen Untergrund.
• Messumformer, Sensoren und Zubehör müssen für einen Transport ordnungsgemäß verpackt werden:
 – Nutzen Sie, wenn möglich, die Originalverpackung von FLEXIM oder eine gleichwertige Kartonage.
 – Positionieren Sie Messumformer, Sensoren und Zubehör mittig in der Kartonage.
 – Füllen Sie Hohlräume mit entsprechendem Verpackungsmaterial (z.B. Papier, Schaumstoff, Luftpolsterfolie).
 – Schützen Sie die Kartonage vor Nässe.

2.8 Empfohlenes Vorgehen in Gefahrensituationen

Vorgehen bei der Brandbekämpfung
• Trennen Sie den Messumformer, wenn möglich, von der Spannungsversorgung.
• Schützen Sie vor dem Löschens elektrische Teile, die nicht vom Brand betroffen sind (z.B. durch Abdecken).
• Wählen Sie ein geeignetes Löschmittel aus. Vermeiden Sie, wenn möglich, leitfähige Löschmittel.
• Halten Sie geltende Mindestabstände ein. Die Mindestabstände sind je nach eingesetztem Löschmittel unterschiedlich.
3 Grundlagen
Bei der Ultraschall-Durchflussmessung wird die Strömungsgeschwindigkeit des in einem Rohr fließenden Fluids bestimmt. Weitere Messgrößen werden von der Strömungsgeschwindigkeit und, falls erforderlich, zusätzlichen Messgrößen abgeleitet.

3.1 Messprinzip

3.1.1 Begriffe
Strömungsprofil
Verteilung der Strömungsgeschwindigkeiten über der Rohrquerschnittsfläche. Für eine optimale Messung muss das Strömungsprofil voll ausgebildet und axialsymmetrisch sein. Die Form des Strömungsprofils hängt davon ab, ob eine Strömung laminar oder turbulent ist, und wird stark von den Bedingungen am Einlauf der Messstelle beeinflusst.

Reynoldszahl Re
Kennzahl zur Beschreibung des Turbulenzverhaltens eines Fluids im Rohr. Die Reynoldszahl Re setzt sich zusammen aus der Strömungsgeschwindigkeit, der kinematischen Viskosität des Fluids und dem Rohrinnendurchmesser.
Wenn die Reynoldszahl einen kritischen Wert überschreitet (bei Strömungen im Rohr in der Regel ca. 2300), findet ein Übergang von einer laminaren zu einer turbulenten Strömung statt.

Laminare Strömung
Eine Strömung, in der keine Turbulenzen auftreten. Es findet keine Vermischung der nebeneinander fließenden Schichten des Fluids statt.

Turbulente Strömung
Eine Strömung, in der Turbulenzen (Verwirbelungen des Fluids) auftreten. In technischen Anwendungen sind Strömungen innerhalb eines Rohrs fast immer turbulent.

Übergangsbereich
Eine Strömung, die teilweise laminar und teilweise turbulent ist.

Schallgeschwindigkeit c

Strömungsgeschwindigkeit v
Mittelwert aller Strömungsgeschwindigkeiten des Fluids über der Rohrquerschnittsfläche.

Akustischer Kalibrierfaktor \(k_a\)
\[k_a = \frac{c_a}{\sin \alpha}\]
Der akustische Kalibrierfaktor \(k_a\) ist ein Sensorparameter, der sich aus der Schallgeschwindigkeit \(c\) innerhalb des Sensors und dem Einstrahlwinkel ergibt. Der Ausbreitungswinkel im angrenzenden Fluid oder Rohrmaterial ergibt sich nach dem Brechungsgesetz:
\[k_a = \frac{c_a}{\sin \alpha} = \frac{c_b}{\sin \beta} = \frac{c_g}{\sin \gamma}\]

Strömungsmechanischer Kalibrierfaktor \(k_{Re}\)
Mit dem strömungsmechanischen Kalibrierfaktor \(k_{Re}\) wird der im Bereich des Schallstrahls gemessene Wert der Strömungsgeschwindigkeit auf den Wert der Strömungsgeschwindigkeit über der gesamten Rohrquerschnittsfläche umgerechnet. Bei einem voll ausgebildeten Strömungsprofil hängt der strömungsmechanische Kalibrierfaktor nur von der Reynoldszahl und der Rauigkeit der Rohrinnenwand ab. Der strömungsmechanische Kalibrierfaktor wird vom Messumformer für jede Messung neu berechnet.

Volumenstrom \(V\)
\[\dot{V} = v \cdot A\]
Das Volumen des Fluids, das in einer bestimmten Zeit durch das Rohr fließt. Der Volumenstrom ergibt sich aus dem Produkt der Strömungsgeschwindigkeit \(v\) und der Rohrquerschnittsfläche \(A\).
Massenstrom m

$m = \dot{V} \cdot \rho$

Die Masse des Fluids, die in einer bestimmten Zeit durch das Rohr fließt. Der Massenstrom ergibt sich aus dem Produkt des Volumenstroms \dot{V} und der Dichte ρ.

Wärmestrom Φ

Die Wärmemenge, die in einer bestimmten Zeit transportiert wird.

3.1.2 Messen der Strömungsgeschwindigkeit im TransitTime-Modus

Die Signale werden von einem Sensorpaar abwechselnd in und entgegen der Flussrichtung gesendet und empfangen. Wenn das Fluid, in dem sich die Signale ausbreiten, fließt, werden die Signale mit dem Fluid mitgeführt.

Diese Verschiebung bewirkt beim Signal in Flussrichtung eine Verkürzung und beim Signal entgegen der Flussrichtung eine Verlängerung des Schallwegs.

Die mittlere Strömungsgeschwindigkeit des Fluids ergibt sich aus:

$$v = k_{Re} \cdot k_a \cdot \frac{\Delta t}{2 \cdot t_y}$$

mit

- v – mittlere Strömungsgeschwindigkeit des Fluids
- k_{Re} – strömungsmechanischer Kalibrierfaktor
- k_a – akustischer Kalibrierfaktor
- Δt – Laufzeitdifferenz
- t_y – Laufzeit im Fluid

Abb. 3.1: Schallweg des Signals in Flussrichtung
3.1.3 Messen der Strömungsgeschwindigkeit im NoiseTrek-Modus

Bei einem hohen Anteil an Gasblasen und/oder Feststoffpartikeln im Fluid kann die Dämpfung des Ultraschallsignals so groß sein, dass eine vollständige Durchstrahlung des Fluids und damit eine Messung im TransitTime-Modus nicht möglich ist. In diesem Fall muss der NoiseTrek-Modus verwendet werden.

Die Messanordnung, die im TransitTime-Modus verwendet wird, muss nicht geändert werden. Die Laufzeitdifferenz \(\Delta t \) zweier aufeinanderfolgender Ultraschallsignale wird bestimmt. Sie ist proportional zu der Strecke, die die Gasblase/das Feststoffpartikel zwischen 2 aufeinanderfolgenden Impulsen zurücklegt, und damit zur mittleren Strömungsgeschwindigkeit des Fluids.
Die mittlere Strömungsgeschwindigkeit des Fluids ergibt sich aus:

\[
v = k_{Re} \cdot k_a \cdot \frac{\Delta t}{2 \cdot \Delta t_p}
\]

mit

- \(v\) – mittlere Strömungsgeschwindigkeit des Fluids
- \(k_{Re}\) – strömungsmechanischer Kalibrierfaktor
- \(k_a\) – akustischer Kalibrierfaktor
- \(\Delta t_p\) – Zeitdifferenz zwischen 2 aufeinanderfolgenden Impulsen
- \(\Delta t\) – Laufzeitdifferenz der Ultraschallsignale \(S_1\) und \(S_2\) (\(\Delta t = t_2 - t_1\))

Abhängig von der Dämpfung des Ultraschallsignals kann die Messwertabweichung im NoiseTrek-Modus höher sein als im TransitTime-Modus.

3.1.4 Messen der Strömungsgeschwindigkeit im HybridTrek-Modus

Die Messanordnung ist identisch zu der des TransitTime-Modus.

3.1.5 Messen der Strömungsgeschwindigkeit im NoiseTrek-Parallelstrahl-Modus

Bei Rohren mit kleinen Durchmessern oder Fluiden, die das Ultraschallsignal stark dämpfen, kann die Laufzeit im Fluid so kurz werden, dass die Signalqualität nicht mehr ausreicht. In diesem Fall muss der NoiseTrek-Parallelstrahl-Modus verwendet werden.

Mit dieser Messanordnung kann nicht im TransitTime-Modus gemessen werden.

Abb. 3.5: Messanordnung im NoiseTrek-Parallelstrahl-Modus
3.1.6 Mehrkanalmessung
Für die Mehrkanalmessung müssen alle Sensorpaare vom gleichen Typ sein und an derselben Messstelle installiert werden. Die Ausgabe der Messwerte erfolgt über einen Verrechnungskanal.

3.2 Messanordnungen
3.2.1 Begriffe

<table>
<thead>
<tr>
<th>Durchstrahlungsanordnung</th>
<th>Reflexanordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Sensoren sind auf gegenüberliegenden Seiten des Rohrs montiert.</td>
<td>Die Sensoren sind auf derselben Seite des Rohrs montiert.</td>
</tr>
</tbody>
</table>

Schallweg
Weg, den das Ultraschallsignal zurücklegt, wenn es das Rohr einmal durchquert. Die Anzahl der Schallwege ist:
- ungerade, wenn die Messung in der Durchstrahlungsanordnung durchgeführt wird
- gerade, wenn die Messung in der Reflexanordnung durchgeführt wird

Strahl
Sensorabstand

Der Sensorabstand wird an den Innenkanten der Sensoren gemessen.

Reflexanordnung

Durchstrahlungsanordnung (positiver Sensorabstand)

Durchstrahlungsanordnung (negativer Sensorabstand)

a – Sensorabstand

Schallstrahlebene

Ebene, in der 1 oder mehrere Schallwege oder Strahlen liegen.

Abb. 3.8: 2 Strahlen in einer Ebene
Abb. 3.9: 2 Schallwege in einer Ebene

3.2.2 Beispiele

<table>
<thead>
<tr>
<th>1-Strahl-Durchstrahlungsanordnung</th>
<th>1-Strahl-Reflexanordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sensorpaar</td>
<td>1 Sensorpaar</td>
</tr>
<tr>
<td>1 Schallweg</td>
<td>2 Schallwege</td>
</tr>
<tr>
<td>1 Strahl</td>
<td>1 Strahl</td>
</tr>
<tr>
<td>1 Ebene</td>
<td>1 Ebene</td>
</tr>
</tbody>
</table>

3.3 Akustische Durchstrahlbarkeit

Das Rohr muss an der Messstelle akustisch durchstrahlbar sein. Die akustische Durchstrahlbarkeit ist dann gegeben, wenn Rohr und Fluid das Schallsignal nicht so stark dämpfen, dass es vollständig absorbiert wird, bevor es den zweiten Sensor erreicht.

Die Dämpfung von Rohr und Fluid wird beeinflusst durch:
- kinematische Viskosität des Fluids
- Anteil an Gasblasen und Feststoffpartikeln im Fluid
- Ablagerungen an der Rohrinnenwand
- Rohrmaterial

 Folgende Bedingungen müssen an der Messstelle erfüllt sein:
- das Rohr ist stets vollständig gefüllt
- es gibt keine Ablagerung von Feststoffpartikeln im Rohr
- es bilden sich keine Blasen

<table>
<thead>
<tr>
<th>2-Strahl-Durchstrahlungsanordnung</th>
<th>2-Strahl-2-Ebenen-Reflexanordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Sensorpaare</td>
<td>2 Sensorpaare</td>
</tr>
<tr>
<td>2 Schallwege</td>
<td>4 Schallwege</td>
</tr>
<tr>
<td>2 Strahlen</td>
<td>2 Strahlen</td>
</tr>
<tr>
<td>1 Ebene</td>
<td>2 Ebenen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4-Strahl-2-Ebenen-Durchstrahlungsanordnung</th>
<th>4-Strahl-4-Ebenen-Reflexanordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Sensorpaare</td>
<td>4 Sensorpaare</td>
</tr>
<tr>
<td>4 Schallwege</td>
<td>8 Schallwege</td>
</tr>
<tr>
<td>4 Strahlen</td>
<td>4 Strahlen</td>
</tr>
<tr>
<td>2 Ebenen</td>
<td>4 Ebenen</td>
</tr>
</tbody>
</table>

- X-Anordnung
- versetzte X-Anordnung

- 2-Strahl-2-Ebenen-Reflexanordnung
- 4-Strahl-4-Ebenen-Reflexanordnung
Beachten Sie folgende Hinweise bei der Auswahl der Messstelle:

Waagerechtes Rohr
Wählen Sie eine Messstelle, wo die Sensoren seitlich am Rohr befestigt werden können, so dass sich die Schallwellen horizontal im Rohr ausbreiten. Damit können Feststoffpartikel am Rohrboden oder Gasblasen an der Rohroberseite die Ausbreitung des Signals nicht beeinflussen.

Senkrechtes Rohr
Wählen Sie die Messstelle dort, wo die Flüssigkeit aufsteigt. Das Rohr muss vollständig gefüllt sein.

Freier Ein- oder Auslauf
Wählen Sie die Messstelle an einem Rohrbereich, der nicht leerlaufen kann.

Selbst blasenfreie Fluide können Gasblasen bilden, wenn sich das Fluid entspannt, z.B. vor Pumpen und hinter großen Querschnittserweiterungen.

Hinweis!
3.4 Ungestörtes Strömungsprofil

Es ist außerordentlich wichtig, die Messstelle in ausreichendem Abstand zu Störstellen zu wählen. Nur dann kann vorausgesetzt werden, dass das Strömungsprofil voll ausgebildet ist. Die Verwendung der Störstellenkorrektur (siehe Abschnitt 13.2.4) ermöglicht jedoch eine Messung auch bei kleineren Abständen von min. 2 d.

Die Beispiele in folgender Tabelle zeigen die empfohlenen geraden Ein- bzw. Auslaufstrecken für die verschiedenen Typen von Durchflusstörstellen.

<table>
<thead>
<tr>
<th>Störstelle</th>
<th>Einlauf: (l \geq 10,d)</th>
<th>Auslauf: (l \geq 2,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°-Krümmer</td>
<td>(l \geq 10,d) ((l \geq 2,d) mit Störstellenkorrektur)</td>
<td>(l \geq 2,d)</td>
</tr>
<tr>
<td>Doppelkrümmer</td>
<td>(l \geq 10,d) ((l \geq 2,d) mit Störstellenkorrektur)</td>
<td>(l \geq 3,d)</td>
</tr>
<tr>
<td>Raumkrümmer (mit Krümmerabstand (l_2 \geq 3,d))</td>
<td>(l \geq 10,d) ((l \geq 2,d) mit Störstellenkorrektur)</td>
<td>(l \geq 3,d)</td>
</tr>
</tbody>
</table>

Tab. 3.1: Empfohlene Abstände zu Störstellen;
\(d \) – Rohrinnendurchmesser an der Messstelle,
\(l \) – empfohlener Abstand zwischen Störstelle und Sensorposition
Tab. 3.1: Empfohlene Abstände zu Störstellen;
d – Rohrinnendurchmesser an der Messstelle,
l – empfohlener Abstand zwischen Störstelle und Sensorposition

| Störstelle: Raumkrümmer (direkt gekoppelt) | Einlauf: l ≥ 40 d
| | (l ≥ 2 d mit Störstellenkorrektur)
<table>
<thead>
<tr>
<th></th>
<th>Auslauf: l ≥ 3 d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Störstelle: Ventil	Einlauf: l ≥ 40 d
	Auslauf: l ≥ 3 d
	![Diagramm Ventil](image2)

Störstelle: Reduzierung	Einlauf: l ≥ 10 d
	Auslauf: l ≥ 3 d
	![Diagramm Reduzierung](image3)

Störstelle: Pumpe	Einlauf: l ≥ 20 d
	Auslauf: l ≥ 3 d
	![Diagramm Pumpe](image4)
4 Produktbeschreibung

4.1 Messsystem

Das Messsystem besteht aus dem Messumformer, den Ultraschallsensoren und dem Rohr, an dem gemessen wird.

Abb. 4.1: Beispiel für eine Messanordnung

1 – Sensor
2 – Rohr
3 – Messumformer

Die Sensoren werden außen am Rohr befestigt. Sie senden und empfangen Ultraschallsignale durch das Fluid.
Der Messumformer steuert den Messzyklus, eliminiert die Störsignale und wertet die Nutzsignale aus. Die Messwerte können vom Messumformer angezeigt, verrechnet und ausgegeben werden.

4.2 Bedienkonzept

Die Bedienung des Messumformers erfolgt über die Tastatur.
In der Anzeige werden durch Drücken der Taste ← oder → nacheinander die folgenden Programmzweige angezeigt:

• Parameter
• Messung
• Optionen
• Sonderfunktionen

Ein Programmzweig wird zwischen 2 Pfeilen ↔ angezeigt.

Abb. 4.2: Bedienungsfeld des Messumformers

1 – LCD-Anzeige (hintergrundbeleuchtet)
2 – Tastatur
4.2 Bedienkonzept

Bei der ersten Inbetriebnahme des Messumformers müssen Einstellungen für Sprache, Uhrzeit, Datum und Maßsystem vorgenommen werden. Danach erscheint der Programmzweig Parameter.

Bei jeder weiteren Inbetriebnahme erscheint die Messwertanzeige, wenn die Messung nicht gestoppt wurde, bevor der Messumformer von der Spannungsversorgung getrennt wurde. Wenn die Messung gestoppt wurde, erscheint der Programmzweig Parameter.

Nach dem Start einer Messung ist es jederzeit möglich, die Parametereinstellungen oder die Konfiguration der Ausgänge des Messumformers anzuzeigen, ohne die Messung zu stoppen. Eine Änderung der Parametereinstellungen während der Messung ist nicht möglich. Wenn die Parametereinstellungen oder die Konfiguration der Ausgänge des Messumformers geändert werden sollen, muss die Messung gestoppt werden.

<table>
<thead>
<tr>
<th>Programmzweig</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Bevor eine Messung gestartet werden kann, müssen die Sensor-, Rohr- und Fluidparameter im Programmzweig Parameter eingegeben werden.</td>
</tr>
<tr>
<td>Messung</td>
<td>Im Programmzweig Messung wird nach dem Aktivieren der Messkanäle und dem Eingeben des Sensorabstands die Messung gestartet.</td>
</tr>
<tr>
<td>Optionen</td>
<td>Kanalbezogene Einstellungen werden im Programmzweig Optionen vorgenommen, wie z.B. Auswahl der Messgröße, Auswahl der Maßeinheit, Eingabe der Dämpfungszahl, Konfiguration der Ausgänge, Zuordnung der Eingänge.</td>
</tr>
<tr>
<td>Sonderfunktionen</td>
<td>Globale Einstellungen, die alle Messkanäle und den Messumformer betreffen, werden im Programmzweig Sonderfunktionen vorgenommen, wie z.B. System-Einstellungen (Sprache, Tastensperre), Messeinstellungen, Kommunikation, Messwertspeicher, Snaps, Konfiguration der Eingänge.</td>
</tr>
</tbody>
</table>
4.3 Anzeige

Aufbau

Abb. 4.3: Menüpunkt des Programmzweigs Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>2</td>
</tr>
<tr>
<td>Angeschl. Sensor</td>
<td>3</td>
</tr>
</tbody>
</table>

1 – Programmzug
2 – Menüpunkt, der gerade bearbeitet wird
3 – Bereich für Auswahllisten, Auswahlfelder oder Eingabefelder

Tab. 4.2: Navigation

<table>
<thead>
<tr>
<th>Horizontale Auswahlliste</th>
<th>Vertikale Auswahlliste</th>
<th>Auswahlfelder</th>
<th>Eingabefelder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Parameter</td>
<td>Messung</td>
<td>Parameter</td>
</tr>
<tr>
<td>Sensor</td>
<td>Angeschl. Sensor</td>
<td>Ladelöschung</td>
<td>Außendurchmesser</td>
</tr>
</tbody>
</table>

• horizontal scrollen mit Taste oder

• vertikal scrollen mit Taste oder

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

• aktivieren/deaktivieren mit Taste oder

• eingeben über die 10 numerischen Tasten der Tastatur

• löschen mit Taste C

Statusanzeigen

Für die Statusanzeigen werden Symbole verwendet.

Abb. 4.4: Statusanzeigen (Zeile 1)

- Messung läuft
- Fehlermeldung
- FastFood-Modus aktiviert
- Messwertspeicher voll
- Anschluss via USB-Kabel
- Tastensperre aktiviert
4.4 Tastatur

Die Tastatur hat 15 Tasten, 3 davon sind Funktionstasten: ENTER, + und C.

Einige Tasten haben Mehrfachfunktionen. Sie können für die Eingabe von Werten, das Scrollen in Auswahllisten und das Ausführen spezieller Funktionen (z.B. Zurücksetzen der Mengenzähler) verwendet werden.

Tab. 4.3: Allgemeine Funktionen

<table>
<thead>
<tr>
<th>Tastenkombination</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Bestätigen der Auswahl oder der Eingabe</td>
</tr>
<tr>
<td>+ C + ENTER</td>
<td>RESET: Drücken Sie diese 3 Tasten gleichzeitig, um eine Fehlfunktion zu beheben. Der Reset kommt einem Neustart des Messumformers gleich. Gespeicherte Daten werden nicht beeinflusst.</td>
</tr>
<tr>
<td>+ C</td>
<td>INIT: Bei einer Initialisierung des Messumformers werden alle Einstellungen auf Werkseinstellungen zurückgesetzt.</td>
</tr>
</tbody>
</table>

Tab. 4.4: Navigation

<table>
<thead>
<tr>
<th>Tasten</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bei der Parametereingabe:</td>
</tr>
<tr>
<td>←</td>
<td>kurzes Drücken: Rückkehr zum vorherigen Menüpunkt</td>
</tr>
<tr>
<td></td>
<td>langes Drücken (mehrere Sekunden): Rückkehr zum Anfang des Programmzweigs</td>
</tr>
<tr>
<td></td>
<td>Während der Messung:</td>
</tr>
<tr>
<td></td>
<td>Anzeige der Auswahlliste: Messung stoppen, Param. anzeigen, Messung anzeigen</td>
</tr>
<tr>
<td></td>
<td>Scrollen links/rechts durch eine Auswahlliste</td>
</tr>
<tr>
<td></td>
<td>Scrollen aufwärts/abwärts durch eine Auswahlliste</td>
</tr>
<tr>
<td>ENTER</td>
<td>Bestätigen eines Menüpunkts</td>
</tr>
</tbody>
</table>

Tab. 4.5: Eingabe von Zahlen

<table>
<thead>
<tr>
<th>Tasten</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>Eingabe der auf der Taste dargestellten Ziffer</td>
</tr>
<tr>
<td>←</td>
<td>Vorzeichen für die Eingabe negativer Werte</td>
</tr>
<tr>
<td></td>
<td>Dezimalzeichen</td>
</tr>
<tr>
<td>C</td>
<td>Löschen von Werten</td>
</tr>
<tr>
<td></td>
<td>Nach dem Löschen erscheint der davor angezeigte Wert.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Bestätigen der Eingabe</td>
</tr>
</tbody>
</table>

Tab. 4.6: Eingabe von Text

<table>
<thead>
<tr>
<th>Tasten</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>←</td>
<td>Positionieren des Cursors</td>
</tr>
<tr>
<td></td>
<td>"A" wird angezeigt und Großschreibung wird aktiviert</td>
</tr>
<tr>
<td>3</td>
<td>"Z" wird angezeigt und Großschreibung wird aktiviert</td>
</tr>
<tr>
<td></td>
<td>Umschalten zwischen Groß- und Kleinschreibung</td>
</tr>
<tr>
<td>1 2</td>
<td>Wählen des vorhergehenden/nachfolgenden Zeichens</td>
</tr>
<tr>
<td>0</td>
<td>Löschen eines Zeichens und Setzen eines Leerzeichens</td>
</tr>
<tr>
<td>ENTER</td>
<td>Bestätigen der Eingabe</td>
</tr>
</tbody>
</table>
5 Transport und Lagerung

5.1 Transport

Für den Transport muss das Messgerät ordnungsgemäß verpackt werden. Für die Gewichtsangaben siehe Technische Spezifikation.

- Nutzen Sie, wenn möglich, die Originalverpackung von FLEXIM oder eine gleichwertige Kartonage.
- Positionieren Sie Messumformer, Sensoren und Zubehör mittig in der Kartonage.
- Füllen Sie Hohlräume mit entsprechendem Verpackungsmaterial (z.B. Papier, Schaumstoff, Luftpolsterfolie).
- Schützen Sie die Kartonage vor Nässe.

Vorsicht!

Beim Verpacken kann der Messumformer herunterfallen. Es besteht die Gefahr des Quetschens von Körperteilen oder der Beschädigung des Messgeräts.

→ Sichern Sie den Messumformer gegen Herunterfallen beim Verpacken.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

Vorsicht!

Beim Anheben kann der Schwerpunkt des Messumformers in der Kartonage verlagert werden. Der Messumformer kann herunterfallen. Es besteht die Gefahr des Quetschens von Körperteilen oder der Beschädigung des Messgeräts.

→ Sichern Sie den Messumformer gegen Herunterfallen beim Transport.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

5.2 Lagerung

- Lagern Sie das Messgerät in der Originalverpackung.
- Lagern Sie das Messgerät nicht im Freien.
- Verschließen Sie alle Öffnungen mit einem Blindstopfen.
- Schützen Sie das Messgerät vor Sonneneinstrahlung.
- Lagern Sie das Messgerät trocken und staubfrei innerhalb des gültigen Temperaturbereichs (siehe Technische Spezifikation).
6 Montage

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (ATEX, IECEx)</td>
</tr>
<tr>
<td>Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.</td>
</tr>
<tr>
<td>→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUS).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (TR TS)</td>
</tr>
<tr>
<td>Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.</td>
</tr>
<tr>
<td>→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUSRU).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warnung!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montage, Anschluss und Inbetriebnahme von nicht autorisiertem und befähigtem Personal</td>
</tr>
<tr>
<td>Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.</td>
</tr>
<tr>
<td>→ Arbeiten am Messumformer dürfen nur von autorisiertem und befähigtem Personal durchgeführt werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeiten in Bergwerken oder engen Räumen</td>
</tr>
<tr>
<td>Vergiftungs-/Erstickungsgefahr durch austretende Gase, Verletzungsgefahr durch beengte Verhältnisse</td>
</tr>
<tr>
<td>→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.</td>
</tr>
<tr>
<td>→ Beachten Sie die geltenden Vorschriften.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warnung!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berühren spannungsführender Teile</td>
</tr>
<tr>
<td>Elektrischer Schlag oder Störlichtbögen können zu schweren Verletzungen führen. Das Messgerät kann beschädigt werden.</td>
</tr>
<tr>
<td>→ Bevor Arbeiten am Messumformer (z.B. Montage, Demontage, Anschluss, Inbetriebnahme) durchgeführt werden, muss der Messumformer von der Spannungsversorgung getrennt werden. Das Entfernen der internen Gerätesicherung ist dafür nicht ausreichend.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorsicht!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel</td>
</tr>
<tr>
<td>Das Nichtbeachten der Vorschriften kann zu schweren Verletzungen führen.</td>
</tr>
<tr>
<td>→ Bei allen Elektroarbeiten müssen die Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel beachtet werden.</td>
</tr>
</tbody>
</table>
6.1 Messumformer

6.1.1 Öffnen und Schließen des Gehäuses

Öffnen

- Lösen Sie die Schrauben am Gehäuse des Messumformers.
- Öffnen Sie den Gehäusedeckel des Messumformers.

Vorsicht!

Berühren von heißen oder kalten Oberflächen
Es kann zu Verletzungen kommen (z.B. zu thermischen Schädigungen).
→ Beachten Sie bei der Montage die Umgebungsbedingungen an der Messstelle.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

Wichtig!

Im explosionsgefährdeten Bereich müssen alle Schutzfolien von Messgerät und Sensorbefestigung entfernt werden (siehe Dokument SIFLUXUS).

Öffnen

- Öffnen Sie den Gehäusedeckel.
- Ziehen Sie die Schrauben am Gehäuse des Messumformers fest (max. Anzugsdrehmoment 1 Nm).

Mögliche Gefährdung durch Öffnen des Geräts bei unzulässigen Umgebungsbedingungen

Öffnen Sie den Messumformer nur bei sicheren Umgebungsbedingungen (z.B. Luftfeuchtigkeit < 90%, keine leitfähigen Verschmutzungen, keine explosive Atmosphäre). Andernfalls müssen zusätzliche Schutzmaßnahmen durchgeführt werden.

Wichtig!

Verwenden Sie zum Öffnen des Gehäusedeckels keine Gegenstände, die die Gehäusedichtung beschädigen können.

- Lösen Sie die Schrauben am Gehäuse des Messumformers.
- Öffnen Sie den Gehäusedeckel des Messumformers.

Schließen

- Schließen Sie den Gehäusedeckel.
- Ziehen Sie die Schrauben am Gehäuse des Messumformers fest (max. Anzugsdrehmoment 1 Nm).

Abb. 6.1: Messumformer

![Abb. 6.1: Messumformer](image_url)
6.1.2 Montage des Messumformers

Hinweis!

Installieren Sie das Gerät an einem schattigen Ort mit den Kabeleinführungen nach unten. Beachten Sie die Temperatur- und Gewichtsangabe aus der Technischen Spezifikation bei der Wahl der Befestigungselemente und des Montageortes.

6.1.2.1 Wandmontage

- Lösen Sie die Schrauben am Gehäuse des Messumformers.
- Öffnen Sie den Gehäusedeckel des Messumformers.
- Befestigen Sie den Messumformer an der Wand mit 4 Schrauben.

Abb. 6.2: Messumformer (Abmessungen in mm)

1 – Befestigungslöcher für Wandmontage Ø 9
6.1.2.2 Rohrmontage

Wichtig!

Das Rohr muss so stabil sein, dass es der Belastung standhält, die durch den Messumformer entsteht, und die Kräfte der Klemmbügel aufnehmen kann.

Montage am 2"-Rohr

Der Rohrmontagesatz wird mit einem Klemmbügel am Rohr befestigt.
- Befestigen Sie das Instrument-Halteblech (2) mit den Muttern (3) und dem Klemmbügel (1) am Rohr.
- Schrauben Sie den Messumformer an das Instrument-Halteblech.

Abb. 6.3: Montage des Instrument-Halteblechs

1 – Klemmbügel
2 – Instrument-Halteblech
3 – Mutter

Abb. 6.4: Montage des Messumformers
6.2 Sensoren

6.2.1 Vorbereitung

6.2.1.1 Auswahl der Messstelle

Die korrekte Auswahl der Messstelle ist für zuverlässige Messergebnisse und eine hohe Messgenauigkeit entscheidend. Eine Messung ist an einem Rohr möglich, wenn:

- sich der Ultraschall mit ausreichend hoher Amplitude ausbreitet
- das Strömungsprofil voll ausgebildet ist

Die korrekte Auswahl der Messstelle und die korrekte Positionierung der Sensoren garantieren, dass das Schallsignal unter optimalen Bedingungen empfangen und korrekt ausgewertet werden kann.

Aufgrund der Vielfalt möglicher Applikationen und der Vielzahl von Faktoren, die eine Messung beeinflussen können, gibt es für die Sensorpositionierung keine Standardlösung.

Die Messung wird durch folgende Faktoren beeinflusst:

- Durchmesser, Material, Auskleidung, Wanddicke und Form des Rohrs
- Fluid
- Gasblasen im Fluid
- Vermeiden Sie Messstellen, die sich in der Nähe deformierter oder beschädigter Stellen am Rohr oder in der Nähe von Schweißnähten befinden.
- Vermeiden Sie Messstellen, an denen sich Ablagerungen im Rohr bilden.
- Achten Sie darauf, dass die Rohroberfläche an der Messstelle eben ist.
- Wählen Sie den Standort des Messumformers innerhalb der Reichweite des Sensorkabels.
- Die Temperatur am Standort muss innerhalb der spezifizierten Umgebungstemperatur des Messumformers und der Sensoren liegen (siehe Technische Spezifikation).

Wenn sich die Messstelle in einem explosionsgefährdeten Bereich befindet, müssen die Gefahrenzone und auftretende Gase ermittelt werden. Die Sensoren und der Messumformer müssen für diese Bedingungen geeignet sein.

6.2.1.2 Rohrvorbereitung

Vorsicht!

Warnung vor schweren Verletzungen durch heiße oder sehr kalte Bauteile

Das Berühren von heißen oder sehr kalten Bauteilen kann zu schweren Verletzungen führen (Verbrennungen/Erfrierungen).

- Alle Montage-, Installations- und Anschlussarbeiten müssen abgeschlossen sein.
- Während der Messung dürfen keine Arbeiten mehr an der Messstelle durchgeführt werden.
- Beachten Sie bei der Montage die Umgebungsbedingungen an der Messstelle.
- Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
- Beachten Sie die geltenden Vorschriften.

Vorsicht!

Kontakt mit Schleifstaub

Es kann zu Verletzungen kommen (z.B. Atembeschwerden, Hautreaktionen, Augenreizungen).

- Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
- Beachten Sie die geltenden Vorschriften.

Wichtig!

Das Rohr muss so stabil sein, dass es der Belastung standhält, die durch Sensoren und Anklemmungen entsteht.

Hinweis!

Beachten Sie die Auswahlkriterien für Rohr und Messstelle.
Rost, Farbe oder Ablagerungen auf dem Rohr absorbieren das Schallsignal. Ein guter akustischer Kontakt zwischen dem Rohr und den Sensoren wird folgendermaßen erreicht:
• Reinigen Sie das Rohr an der Messstelle.
 – Entfernen Sie Rost oder lose Farbe.

6.2.1.3 Auswahl der Messanordnung

1-Strahl-Durchstrahlungsanordnung

• größerer Strömungsgeschwindigkeits- und Schallgeschwindigkeitsbereich im Vergleich zur Reflexanordnung
• Einsatz bei Belagsbildung an der Rohrinnenwand oder bei stark akustisch dämpfenden Gasen oder Flüssigkeiten (da nur 1 Schallweg)

1-Strahl-Reflexanordnung

• kleinerer Strömungsgeschwindigkeits- und Schallgeschwindigkeitsbereich im Vergleich zur Durchstrahlungsanordnung
• Querstromungseffekte werden kompensiert, da der Strahl das Rohr in 2 Richtungen durchquert
• höhere Messgenauigkeit, da mit steigender Anzahl der Schallwege die Messgenauigkeit steigt

2-Strahl-Durchstrahlungsanordnung

• gleiche Merkmale wie bei 1-Strahl-Durchstrahlungsanordnung
• zusätzliches Merkmal: Querstromungseffekte werden kompensiert, da Messung mit 2 Strahlen

2-Strahl-2-Ebenen-Reflexanordnung

• gleiche Merkmale wie bei 1-Strahl-Reflexanordnung
• zusätzliches Merkmal: Strömungsprofileinflüsse werden kompensiert, da Messung in 2 Ebenen
Wenn sich die Messstelle in der Nähe eines Krümmers befindet, werden für die Auswahl der Schallstrahlebene folgende Messanordnungen empfohlen.

4-Strahl-2-Ebenen-Durchstrahlungsanordnung

- gleiche Merkmale wie bei 2-Strahl-Durchstrahlungsanordnung
- Strömungsprofileinflüsse werden kompensiert, da Messung in 2 Ebenen

4-Strahl-4-Ebenen-Reflexanordnung

- gleiche Merkmale wie bei 2-Strahl-2-Ebenen-Reflexanordnung
- Strömungsprofileinflüsse werden besser kompensiert, da Messung in 4 Ebenen

Wenn sich die Messstelle in der Nähe eines Krümmers befindet, werden für die Auswahl der Schallstrahlebene folgende Messanordnungen empfohlen.

Senkrechter Rohrverlauf

- Die Schallstrahlebene wird im Winkel von 90° zur Krümmerebene gewählt. Der Krümmer liegt vor der Messstelle.

Waagerechter Rohrverlauf

- Die Schallstrahlebene wird im Winkel von 90° ± 45° zur Krümmerebene gewählt. Der Krümmer liegt vor der Messstelle.
6.2.2 Montage der Sensoren

6.2.2.1 Ausrichten der Sensoren und Bestimmen des Sensorabstands
Der Sensorabstand ist der Abstand zwischen den Innenkanten der Sensoren.

Abb. 6.5: Ausrichtung der Sensoren und Sensorabstand

- Wählen Sie die Montageanleitung der mitgelieferten Sensorbefestigung aus.
6.2.2.2 Anordnen der Sensoren
Für die Anordnung der Sensoren in Montage-Schienen gibt es mehrere Varianten:

Abb. 6.6: Anordnung der Sensoren in Montage-Schienen

Reflexanordnung, 1 Schiene

Reflexanordnung, 2 Schienen

Durchstrahlungsanordnung, 2 Schienen parallel

Durchstrahlungsanordnung, 2 Schienen versetzt

6.2.2.3 Befestigen der Sensoren ****LI**
Wenn das Typenschild der Sensoren ****LI** bei der Montage vom Sensorkabel entfernt wird, muss es im Anschluss wieder am Sensorkabel angebracht und mit dem mitgelieferten Kabelbinder fixiert werden. Der Schrumpfschlauch darf nicht wieder verwendet werden.

Abb. 6.7: Typenschild am Sensorkabel

vor Montage:
nach Montage:

1 – Sensoren
2 – Typenschild
3 – Schrumpfschlauch
4 – Kabelbinder
6.2.2.4 Befestigen mit Variofix L, PermaRail

Lieferumfang (Beispiel)

Variofix L

Sensorpaar

Schnellspannschloss mit Spannband

oder

Spannenschellenschloss mit Spannband

oder

Ratschenschloss und Spannbanderolle
Montage

Tab. 6.1: Richtwerte zur Montage beider Sensoren in einer Variofix L

<table>
<thead>
<tr>
<th>Sensorfrequenz (3. Zeichen des technischen Typs)</th>
<th>Schienenlänge [mm]</th>
<th>Sensorabstand [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>368</td>
<td>< 94</td>
</tr>
<tr>
<td>G, H, K (LI)</td>
<td>368</td>
<td>< 94</td>
</tr>
<tr>
<td>G, H, K (außer LI)</td>
<td>348</td>
<td>< 89</td>
</tr>
<tr>
<td>M, P (Lambwellen-Sensoren)</td>
<td>234</td>
<td>< 84</td>
</tr>
<tr>
<td>M, P (Scherwellen-Sensoren)</td>
<td></td>
<td>< 100</td>
</tr>
<tr>
<td>Q</td>
<td>176</td>
<td>< 69</td>
</tr>
</tbody>
</table>

Im Folgenden wird die Montage von 2 Sensorbefestigungen in Reflexanordnung beschrieben (1 Sensorbefestigung pro Sensor).

Abb. 6.8: Sensorbefestigung Variofix L (Durchstrahlungsanordnung) Abb. 6.9: Sensorbefestigung Variofix L (Reflexanordnung)

Montageschritte im Überblick

- **Schritt 1**
 Demontieren der Variofix L

- **Schritt 2**
 Befestigen der Spannschlösser an den Spannbändern

- **Schritt 3**
 Befestigen des Spannbandes am Rohr

- **Schritt 4**
 Befestigen der Schiene am Rohr

- **Schritt 5**
 Einbauen der Sensoren in Variofix L
Schritt 1: Demontieren der Variofix L

- Bauen Sie die Sensorbefestigung Variofix L auseinander.

Abb. 6.10: Demontage von Variofix L

1 – Abdeckung
2 – Schraube
3 – Mutter
4 – Schiene
5 – Spannbandklammer

Schritt 2: Befestigen der Spannschlösse an den Spannbändern

- Wählen Sie die Montageanleitung des mitgelieferten Spannschlosses aus:

 Spannschellenschloss
 Das Spannschloss ist am Spannband befestigt (siehe Abb. 6.11).

 Schnellspannschloss
 Das Spannschloss ist am Spannband befestigt (siehe Abb. 6.12).
 - Kürzen Sie das Spannband (Rohrumfang + mindestens 120 mm).

Abb. 6.11: Spannschellenschloss mit Spannband
Abb. 6.12: Schnellspannschloss mit Spannband
Ratschenschloss
• Kürzen Sie das Spannband (Rohrumfang + mindestens 120 mm).

<table>
<thead>
<tr>
<th>Vorsicht!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Schnittstelle des Spannbands ist scharfkantig.</td>
</tr>
<tr>
<td>Verletzungsgefahr!</td>
</tr>
<tr>
<td>→ Entgraten Sie scharfe Kanten.</td>
</tr>
<tr>
<td>→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.</td>
</tr>
<tr>
<td>→ Beachten Sie die geltenden Vorschriften.</td>
</tr>
</tbody>
</table>

• Schieben Sie das Spannband ca. 100 mm durch die Teile (1) und (2) des Ratschenschlosses (siehe Abb. 6.13 a).
• Biegen Sie das Spannband um.
• Schieben Sie das Spannband durch Teil (1) des Ratschenschlosses (siehe Abb. 6.13 b).
• Ziehen Sie das Spannband fest.
• Wiederholen Sie die Schritte für das zweite Spannband.

Abb. 6.13: Ratschenschloss mit Spannband

Schritt 3: Befestigen des Spannbands am Rohr
Es wird ein Spannband am Rohr befestigt. Die Montage des zweiten Spannbands erfolgt zu einem späteren Zeitpunkt.

Abb. 6.14: Spannband mit Spannbandklammer und Metallfeder am Rohr

Wählen Sie die Montageanleitung des mitgelieferten Spannschlosses aus:

Spanschellenschloss
• Schieben Sie das Spannband durch die Spannbandklammer (siehe Abb. 6.15).
• Positionieren Sie Spannschloss und Spannbandklammer am Rohr (siehe Abb. 6.14). Montieren Sie die Spannbandklammer bei waagerechten Rohren seitlich am Rohr, falls möglich.
• Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannschloss (siehe Abb. 6.17).
• Ziehen Sie das Spannband fest.
• Ziehen Sie die Spannschlossschraube fest.
Schnellspannschloss

- Schieben Sie das Spannband durch Spannbandklammer und Metallfeder (siehe Abb. 6.15 und Abb. 6.16).
- Positionieren Sie Spannbandlücke, Spannbandklammer und Metallfeder am Rohr (siehe Abb. 6.14):
 - Spannbandklammer bei waagerechten Rohren seitlich am Rohr montieren, falls möglich
 - Metallfeder gegenüberliegend von der Spannbandklammer montieren

Abb. 6.15: Spannband mit Spannbandklammer

1 – Spannbandklammer

Abb. 6.16: Spannband mit Schnellspannschloss und Metallfeder

1 – Spannschloßschraube
2 – Metallfeder

- Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannbandlücke (siehe Abb. 6.16).
- Ziehen Sie das Spannband fest.
- Ziehen Sie die Spannschloßschraube fest.

Ratschenschloss

- Schieben Sie das Spannband durch Spannbandklammer und Metallfeder (siehe Abb. 6.18). Die Metallfeder muss nicht montiert werden an:
 - Stahllrohren
 - Rohren mit einem Rohraußendurchmesser < 80 mm
 - Rohren, die keinen größeren Temperaturumschwankungen ausgesetzt sind
- Positionieren Sie Ratschenschloss, Spannbandklammer und Metallfeder (falls erforderlich) am Rohr (siehe Abb. 6.14):
 - Spannbandklammer bei waagerechten Rohren seitlich am Rohr montieren, falls möglich
 - Metallfeder (falls erforderlich) gegenüberliegend von der Spannbandklammer montieren
- Legen Sie das Spannband um das Rohr und schieben Sie es durch den Schlitz der Spannschloßschraube (siehe Abb. 6.19).
- Ziehen Sie das Spannband fest.
- Schneiden Sie das überstehende Spannband ab (siehe Abb. 6.19).

Vorsicht!

| Die Schnittstelle des Spannbands ist scharfkantig. |
| Verletzungsgefahr! |
| → Entgraten Sie scharfe Kanten. |
| → Tragen Sie die vorgeschriebene persönliche Schutzausrüstung. |
| → Beachten Sie die geltenden Vorschriften. |

- Ziehen Sie die Spannschloßschraube fest.
Hinweis!
Zum Lösen der Schraube und des Spannbands drücken Sie den Hebel nach unten (siehe Abb. 6.19).

Abb. 6.18: Spannband mit Metallfeder und Spannbandklammer

1 – Metallfeder
2 – Spannbandklammer

Abb. 6.19: Ratschenschloss mit Spannband

1 – Drehrichtung
2 – Schnittkante
3 – Hebel
4 – Spannenschlossschraube mit Schlitz

Schritt 4: Befestigen der Schiene am Rohr
• Setzen Sie die Spannbandklammer (2) in die Schiene (siehe Abb. 6.20). Achten Sie dabei auf die Ausrichtung der Spannbandklammer.
• Ziehen Sie die Mutter der Spannbandklammer (2) leicht an.
• Schrauben Sie die Schiene an Spannbandklammer (1) (siehe Abb. 6.21).
• Ziehen Sie die Mutter der Spannbandklammer (1) fest, aber nicht so fest, dass das Spannband beschädigt wird.

Abb. 6.20: Schiene mit Spannbandklammer

1 – Mutter
2 – Spannbandklammer
Abb. 6.21: Schiene einseitig am Rohr befestigt

1 – Spannbandklammer
2 – Spannbandklammer
3 – Mutter

- Wählen Sie die Montageanleitung des mitgelieferten Spannschlosses aus:

 Spannschellenschluss
 - Schieben Sie das Spannband durch Spannbandklammer (2).
 - Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannschloss (siehe Abb. 6.22 und Abb. 6.23).
 - Ziehen Sie das Spannband fest.
 - Ziehen Sie die Spannschlossschraube fest.
 - Ziehen Sie die Mutter der Spannbandklammer (2) fest, aber nicht so fest, dass das Spannband beschädigt wird.

Abb. 6.22: Schiene am Rohr

1 – Spannbandklammer
2 – Spannbandklammer
3 – Metallfeder
4 – Mutter
5 – Spannschloss

Schnellspannenschluss
- Schieben Sie das Spannband durch Spannbandklammer (2) und die Metallfeder.
- Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannschloss (siehe Abb. 6.22 und Abb. 6.24).
- Positionieren Sie die Metallfeder gegenüber von Spannbandklammer (2).
- Ziehen Sie das Spannband fest.
- Ziehen Sie die Spannschlossschraube fest.
- Ziehen Sie die Mutter der Spannbandklammer (2) fest, aber nicht so fest, dass das Spannband beschädigt wird.
Ratschenschloss

- Schieben Sie das Spannband durch Spannbandklammer (2) und die Metallfeder (siehe Abb. 6.22 und Abb. 6.25). Die Metallfeder muss nicht montiert werden an:
 - Stahlrohren
 - Rohren mit einem Rohraußendurchmesser < 80 mm
 - Rohren, die keinen größeren Temperaturschwankungen ausgesetzt sind
- Positionieren Sie Ratschenschloss, Spannbandklammer (2) und Metallfeder (falls erforderlich) am Rohr.
- Montieren Sie die Metallfeder gegenüber der Spannbandklammer.
- Legen Sie das Spannband um das Rohr und schieben Sie es durch den Schlitz der Spann schlossschraube (siehe Abb. 6.26).
- Ziehen Sie das Spannband fest.
- Schneiden Sie das überstehende Spannband ab (siehe Abb. 6.26).

Vorsicht!

Die Schnittstelle des Spannbands ist scharfkantig.
Verletzungsgefahr!

- Entgraten Sie scharfe Kanten.
- Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
- Beachten Sie die geltenden Vorschriften.

Hinweis!

Zum Lösen der Schraube und des Spannbands drücken Sie den Hebel nach unten (siehe Abb. 6.19).
Schritt 5: Einbauen der Sensoren in Variofix L

- Drücken Sie die Sensoren fest auf die Sensorhalterungen in den Abdeckungen, so dass die Sensoren einrasten und fest fixiert sind. Die Sensorkabel zeigen in entgegengesetzte Richtungen (siehe Abb. 6.28).

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Pfeile auf den Sensoren und den Abdeckungen müssen in die gleiche Richtung zeigen.</td>
</tr>
</tbody>
</table>

Abb. 6.28: Einbauen der Sensoren in die Abdeckungen

- Stellen Sie den Sensorabstand ein, der am Messumformer angezeigt wird (siehe Abb. 6.29).
- Fixieren Sie die Kabel der Sensoren an der Zugentlastungsklemme, um sie vor mechanischer Belastung zu schützen (siehe Abb. 6.29).
- Geben Sie Koppelfolie (oder ein wenig Koppelpaste für eine kurzzeitige Montage) auf die Kontaktflächen der Sensoren. Die Koppelfolie kann mit ein wenig Koppelpaste auf den Sensorkontaktflächen fixiert werden.
- Setzen Sie die Abdeckungen mit den Sensoren auf die Schienen.
- Korrigieren Sie den Sensorabstand, falls notwendig.
• Ziehen Sie die Schrauben der Abdeckungen fest (siehe Abb. 6.30).

1 – Abdeckung
2 – Zugentlastungsklemme
3 – Potentialausgleichsklemme
a – Sensorabstand

Hinweis!
Achten Sie darauf, dass die Koppelfolie auf den Sensorkontaktflächen bleibt. Für Informationen zur Koppelfolie siehe Sicherheitsdatenblatt.
6.2.2.5 Befestigen mit Variofix C

Lieferumfang (Beispiel)

Variofix C

Sensorpaar

Schnellspannschloss mit Spannband

oder

Spannschellenschloss mit Spannband

oder

Spannbandrolle

Ratschenschloss
Montage
 Bei Messung in Reflexanordnung wird 1 Sensorbefestigung an der Seite des Rohrs montiert.
 Bei Messung in Durchstrahlungsanordnung werden 2 Sensorbefestigungen auf gegenüberliegenden Seiten des Rohrs montiert.
 Im Folgenden wird die Montage von 1 Sensorbefestigung beschrieben (Sensoren in Reflexanordnung).

Die Montageschritte im Überblick

- **Schritt 1**
 Demontieren der Variofix C

- **Schritt 2**
 Befestigen der Spannschlösser an den Spannbändern

- **Schritt 3**
 Befestigen des Spannbands am Rohr

- **Schritt 4**
 Befestigen der Schiene am Rohr

- **Schritt 5**
 Einbauen der Sensoren in Variofix C

Schritt 1: Demontieren der Variofix C

- Bauen Sie die Sensorbefestigung Variofix C auseinander.
 Um die Abdeckung von der Schiene zu entfernen, biegen Sie die Außenwände der Abdeckung nach außen.
 Um den Federbügel von der Schiene zu entfernen, schieben Sie ihn über die Einkerbungen der Schiene und heben ihn ab.

Abb. 6.33: Entfernen der Abdeckung
Schritt 2: Befestigen der Spannschläser an den Spannbändern

- Wählen Sie die Montageanleitung des mitgelieferten Spannschlosses aus:

Spannschellenschloss
Das Spannschloss ist am Spannband befestigt (siehe Abb. 6.35).

Schnellspannschloss
Das Spannschloss ist am Spannband befestigt (siehe Abb. 6.36).

- Kürzen Sie das Spannband (Rohrumfang + mindestens 120 mm).

Abb. 6.34: Demontage von Variofix C

1 – Abdeckung
2 – Andrückschraube
3 – Federbügel
4 – Einkerbung
5 – Abstandhalter
6 – Schiene
7 – Spannbandklammer

Abb. 6.35: Spannschellenschloss mit Spannband
Abb. 6.36: Schnellspannschloss mit Spannband
Ratschenschloss

• Kürzen Sie das Spannband (Rohrumfang + mindestens 120 mm).

Vorsicht!

Die Schnittstelle des Spannbands ist scharfkantig.

Verletzungsgefahr!
→ Entgraten Sie scharfe Kanten.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

• Schieben Sie das Spannband ca. 100 mm durch die Teile (1) und (2) des Ratschenschlosses (siehe Abb. 6.37 a).
• Biegen Sie das Spannband um.
• Schieben Sie das Spannband durch Teil (1) des Ratschenschlosses (siehe Abb. 6.37 b).
• Ziehen Sie das Spannband fest.
• Wiederholen Sie die Schritte für das zweite Spannband.

Abb. 6.37: Ratschenschloss mit Spannband

Schritt 3: Befestigen des Spannbandes am Rohr

Es wird ein Spannband am Rohr befestigt. Die Montage des zweiten Spannbandes erfolgt zu einem späteren Zeitpunkt.

Abb. 6.38: Spannband mit Spannbandklammer und Metallfeder am Rohr

1 – Spannbandklammer
2 – Spannschloss
3 – Metallfeder

Wählen Sie die Montageanleitung des mitgelieferten Spanschlosses aus:

Spannchellschloss

• Schieben Sie das Spannband durch die Spannbandklammer (siehe Abb. 6.39).
• Positionieren Sie Spannchelloch und Spannbandklammer am Rohr (siehe Abb. 6.38). Montieren Sie die Spannbandklammer bei waagerechten Rohren seitlich am Rohr, falls möglich.
• Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannchelloch (siehe Abb. 6.41).
• Ziehen Sie das Spannband fest.
• Ziehen Sie die Spannchellochschanfe fest.
Schnellspannschloss
- Schieben Sie das Spannband durch Spannbandklammer und Metallfeder (siehe Abb. 6.39 und Abb. 6.40).
- Positionieren Sie Spannband, Spannbandklammer und Metallfeder am Rohr (siehe Abb. 6.38):
 - Spannbandklammer bei waagerechten Rohren seitlich am Rohr montieren, falls möglich
 - Metallfeder gegenüberliegend von der Spannbandklammer montieren

Abb. 6.39: Spannband mit Spannbandklammer

1 – Spannbandklammer

Abb. 6.40: Spannband mit Schnellspannschloss und Metallfeder

1 – Spannbandklammer
2 – Metallfeder

• Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannband (siehe Abb. 6.40).
• Ziehen Sie das Spannband fest.
• Ziehen Sie die Spannschlossschraube fest.

Ratschenschloss
- Schieben Sie das Spannband durch Spannbandklammer und Metallfeder (siehe Abb. 6.42). Die Metallfeder muss nicht montiert werden an:
 - Stahlrohren
 - Rohren mit einem Rohraußendurchmesser < 80 mm
 - Rohren, die keinen größeren Temperaturschwankungen ausgesetzt sind
- Positionieren Sie Ratschenschloss, Spannbandklammer und Metallfeder (falls erforderlich) am Rohr (siehe Abb. 6.38):
 - Spannbandklammer bei waagerechten Rohren seitlich am Rohr montieren, falls möglich
 - Metallfeder (falls erforderlich) gegenüberliegend von der Spannbandklammer montieren
- Legen Sie das Spannband um das Rohr und schieben Sie es durch den Schlitz der Spannbandfeder (siehe Abb. 6.43).
• Ziehen Sie das Spannband fest.
• Schneiden Sie das überstehende Spannband ab (siehe Abb. 6.43).

Vorsicht!

Die Schnittstelle des Spannbands ist scharfkantig.
Verletzungsgefahr!

→ Entgraten Sie scharfe Kanten.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

• Ziehen Sie die Spannbandfeder fest.
Schritt 4: Befestigen der Schiene am Rohr

• Setzen Sie die Spannbandklammer (2) in die Schiene (siehe Abb. 6.44). Achten Sie dabei auf die Ausrichtung der Spannbandklammer.
• Ziehen Sie die Mutter der Spannbandklammer (2) leicht an.
• Schrauben Sie die Schiene an Spannbandklammer (1) (siehe Abb. 6.45).
• Ziehen Sie die Mutter der Spannbandklammer (1) fest, aber nicht so fest, dass das Spannband beschädigt wird.

Hinweis!
Zum Lösen der Schraube und des Spannbands drücken Sie den Hebel nach unten (siehe Abb. 6.43).

Abb. 6.42: Spannband mit Metallfeder und Spannbandklammer

1 – Metallfeder
2 – Spannbandklammer

Abb. 6.43: Ratschenschloss mit Spannband

1 – Drehrichtung
2 – Schnittkante
3 – Hebel
4 – Spannschlossschraube mit Schlitz

Abb. 6.44: Schiene mit Spannbandklammer

1 – Mutter
2 – Spannbandklammer
• Wählen Sie die Montageanleitung des mitgelieferten Spannschlosses aus:

Spannschellenschloss
• Schieben Sie das Spannband durch Spannbandklammer (2).
• Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannschloss (siehe Abb. 6.46 und Abb. 6.47).
• Ziehen Sie das Spannband fest.
• Ziehen Sie die Spannlosschraube fest.
• Ziehen Sie die Mutter der Spannbandklammer (2) fest, aber nicht so fest, dass das Spannband beschädigt wird. Die Schiene muss fest mit dem Rohr verbunden sein.

Schnellspannschloss
• Schieben Sie das Spannband durch Spannbandklammer (2) und die Metallfeder.
• Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannschloss (siehe Abb. 6.46 und Abb. 6.48).
• Positionieren Sie die Metallfeder gegenüber von Spannbandklammer (2).
• Ziehen Sie das Spannband fest.
• Ziehen Sie die Spannlosschraube fest.
• Ziehen Sie die Mutter der Spannbandklammer (2) fest, aber nicht so fest, dass das Spannband beschädigt wird.
Ratschenschloss

- Schieben Sie das Spannband durch Spannbandklammer (2) und die Metallfeder (siehe Abb. 6.46 und Abb. 6.49). Die Metallfeder muss nicht montiert werden an:
 - Stahlrohren
 - Rohren mit einem Rohraußendurchmesser < 80 mm
 - Rohren, die keinen größeren Temperatur Schwankungen ausgesetzt sind
- Positionieren Sie Ratschenschloss, Spannbandklammer (2) und Metallfeder (falls erforderlich) am Rohr.
- Montieren Sie die Metallfeder gegenüber der Spannbandklammer.
- Legen Sie das Spannband um das Rohr und schieben Sie es durch den Schlitz der Spann schloßschraube (siehe Abb. 6.50).
- Ziehen Sie das Spannband fest.
- Schneiden Sie das überstehende Spannband ab (siehe Abb. 6.50).

Vorsicht!

| Die Schnittstelle des Spannbands ist scharfkantig. |
| Verletzungsgefahr! |
| → Entgraten Sie scharfe Kanten. |
| → Tragen Sie die vorgeschriebene persönliche Schutzausrüstung. |
| → Beachten Sie die geltenden Vorschriften. |

- Ziehen Sie die Spann schloßschraube fest.
- Ziehen Sie die Mutter der Spannbandklammer (2) fest, aber nicht so fest, dass das Spannband beschädigt wird (siehe Abb. 6.46).

Hinweis!

| Zum Lösen der Schraube und des Spannbandes drücken Sie den Hebel nach unten (siehe Abb. 6.50). |

Abb. 6.49: Spannband mit Metallfeder und Spannbandklammer

1 – Metallfeder
2 – Spannbandklammer

Abb. 6.50: Ratschenschloss mit Spannband

1 – Drehrichtung
2 – Schnittkante
3 – Hebel
4 – Spann schloßschraube mit Schlitz
Schritt 5: Einbauen der Sensoren in Variofix C

- Geben Sie Koppelfolie (oder ein wenig Koppelpaste für eine kurzzeitige Montage) auf die Kontaktflächen der Sensoren. Die Koppelfolie kann mit ein wenig Koppelpaste auf der Sensorkontaktfläche fixiert werden.

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwenden Sie Koppelpaste statt Koppelfolie, wenn das Signal für die Messung nicht ausreichend ist. Für Informationen zur Koppelfolie oder Koppelpaste siehe Sicherheitsdatenblatt.</td>
</tr>
</tbody>
</table>

- Positionieren Sie die Sensoren in der Schiene, so dass die Gravuren auf den Sensoren einen Pfeil ergeben. Die Sensorkabel zeigen in entgegengesetzte Richtungen (siehe Abb. 6.51).
- Stellen Sie den Sensorabstand ein, der am Messumformer angezeigt wird (siehe Abb. 6.51).
- Schieben Sie die Federbügel über die Sensoren (siehe Abb. 6.52).
- Fixieren Sie die Sensoren, indem Sie die Andrückschrauben leicht anziehen. Das Ende der Andrückschraube muss über der Bohrung am Sensor positioniert werden (siehe Abb. 6.51 und Abb. 6.52).
- Korrigieren Sie den Sensorabstand, falls notwendig.
- Ziehen Sie die Andrückschrauben fest.
- Fixieren Sie die Abstandhalter an der Schiene, um die Sensorposition zu kennzeichnen (siehe Abb. 6.51).
- Fixieren Sie die Sensorkabel mit der Kabelfixierung, um sie vor mechanischer Belastung zu schützen (siehe Abb. 6.52).
- Setzen Sie die Abdeckung auf die Schiene (siehe Abb. 6.53).
- Ziehen Sie die Schrauben (2) an beiden Seiten der Abdeckung fest (siehe Abb. 6.53).

Abb. 6.51: Sensoren in Schiene (Federbügel nicht dargestellt)

```
1 – Abstandhalter
2 – Bohrung
a – Sensorabstand
```

Abb. 6.52: Sensoren in Schiene

```
1 – Potentialausgleichsklemme
2 – Federbügel
3 – Andrückschraube
4 – Kabelfixierung
```
Die Abdeckung wird von der montierten Sensorbefestigung Variofix C folgendermaßen entfernt:
• Lösen Sie die Schrauben (siehe Abb. 6.53).
• Verwenden Sie ein Hebelwerkzeug, um die Abdeckung zu entfernen.
• Führen Sie das Hebelwerkzeug max. 3 mm in eine der 4 Öffnungen der Abdeckung (siehe Abb. 6.54).
• Drücken Sie mit dem Hebelwerkzeug gegen die Halterung.
• Biegen Sie die Abdeckung nach außen und lösen Sie sie aus der Verankerung.
• Wiederholen Sie die Schritte an den 3 anderen Öffnungen.
• Heben Sie die Abdeckung von der Schiene.

Abb. 6.53: Variofix C mit Sensoren am Rohr

1 – Abdeckung
2 – Schraube

Abb. 6.54: Entfernen der Abdeckung

1 – Hebelwerkzeug
2 – Halterung
6.2.2.6 Befestigen mit Montageschuh und Spannschellenschloss

- Schieben Sie das Spannband durch die Nut an der Oberseite des Montageschuhs.
- Positionieren Sie Montageschuh und Spannschloss am Rohr. Montieren Sie den Montageschuh bei waagerechten Rohren seitlich am Rohr, falls möglich.
- Legen Sie das Spannband um das Rohr und schieben Sie es durch das Spannschloss.
- Ziehen Sie das Spannband fest.
- Ziehen Sie die Schraube des Spannschlosses fest.

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für eine gute Befestigung muss das Spannschloss vollständig auf dem Rohr aufliegen.</td>
</tr>
</tbody>
</table>

- Wiederholen Sie die Schritte zur Befestigung des 2. Montageschuhs.
- Stellen Sie den angezeigten Sensorabstand zwischen den Innenkanten der Montageschuhe mit Hilfe des Maßbands ein.
- Ziehen Sie die Schrauben der Spannschlösser fest.
- Schieben Sie den Sensor in den Montageschuh.
- Wiederholen Sie die Schritte für den 2. Sensor.

Abb. 6.55: Sensor im Montageschuh, montiert mit Spannband und Spannschloss

| 1 – Montageschuh |
| 2 – Spannschloss |

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenn die Sensoren an einem senkrechten Rohr befestigt werden und der Messumformer tiefer als die Sensoren steht, wird empfohlen, die Sensorkabel mit einem Kabelbinder am Spannband zu befestigen, um sie vor mechanischer Belastung zu schützen.</td>
</tr>
</tbody>
</table>
6.3 Temperaturfühler

6.3.1 Rohrvorbereitung

Vorsicht!

Kontakt mit Schleifstaub
Es kann zu Verletzungen kommen (z.B. Atembeschwerden, Hautreaktionen, Augenreizungen).

→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

Wichtig!

Das Rohr muss so stabil sein, dass es der Belastung standhält, die durch die Befestigung des Temperaturfühlers entsteht.

Rost, Farbe oder Ablagerungen auf dem Rohr isolieren die Messstelle thermisch. Ein guter thermischer Kontakt zwischen dem Rohr und dem Temperaturfühler wird folgendermaßen erreicht:

• Reinigen Sie das Rohr an der Messstelle.
 – Entfernen Sie Isoliermaterial, Rost oder lose Farbe.
• Verwenden Sie Koppelfolie oder tragen Sie Wärmeleitpaste oder Koppelpaste auf die Kontaktfläche des Temperaturfühlers auf. Beachten Sie die spezifizierte Umgebungstemperatur.
• Achten Sie darauf, dass zwischen der Kontaktfläche des Temperaturfühlers und der Rohrwand keine Lufteinschlüsse sind.

6.3.2 Montieren des Temperaturfühlers (Ansprechzeit 50 s)

Hinweis!

Der Temperaturfühler muss thermisch isoliert werden.

Wählen Sie die Montageanleitung des mitgelieferten Spannschlosses aus:

6.3.2.1 Montieren mit Spannschloss

Vorsicht!

Die Schnittstelle des Spannbandes ist scharfkantig.
Verletzungsgefahr!

→ Entgraten Sie scharfe Kanten.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

• Kürzen Sie das Spannband (Rohrumfang + mindestens 120 mm).
• Stellen Sie sicher, dass Teil (2) des Spannschlosses auf Teil (1) liegt (siehe Abb. 6.56 a). Die Haken von Teil (2) müssen sich auf der äußeren Seite des Spannschlosses befinden.
• Um das Spannschloss am Spannband zu fixieren, ziehen Sie ca. 20 mm des Spannbandes durch den Schlit des Spannschlosses (siehe Abb. 6.56 b).
• Biegen Sie das Ende des Spannbandes um.
• Positionieren Sie den Temperaturfühler am Rohr (siehe Abb. 6.57).
• Legen Sie das Spannband um Temperaturfühler und Rohr.
• Schieben Sie das Spannband durch die Teile (2) und (1) des Spannschlosses.
• Ziehen Sie das Spannband fest und rasten Sie es in den inneren Haken des Spannschlosses ein.
• Ziehen Sie die Schraube des Spannschlosses fest.
6.3.2.2 Montieren mit FLEXIM-Spannschloss

Vorsicht!

Die Schnittstelle des Spannbands ist scharfkantig.
Verletzungsgefahr!
→ Entgraten Sie scharfe Kanten.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

- Kürzen Sie das Spannband (Rohrumfang + mindestens 120 mm).
- Schieben Sie ca. 20 mm des Spannbands durch den Schlitz des Spannschlosses.
- Biegen Sie das Ende des Spannbands um.
- Positionieren Sie den Temperaturfühler am Rohr (siehe Abb. 6.57).
- Legen Sie das Spannband um Temperaturfühler und Rohr.
- Schieben Sie das Spannband durch die Teile (2) und (1) des Spannschlosses.
- Ziehen Sie das Spannband fest an und rasten Sie es in den inneren Haken des Spannschlosses ein.
- Ziehen Sie die Schraube des Spannschlosses fest.

Abb. 6.58: FLEXIM-Spannschloss
6.3.2.3 Montieren mit Schnellspannschloss

<table>
<thead>
<tr>
<th>Vorsicht!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Schnittstelle des Spannbands ist scharfkantig.</td>
</tr>
<tr>
<td>Verletzungsgefahr!</td>
</tr>
<tr>
<td>→ Entgraten Sie scharfe Kanten.</td>
</tr>
<tr>
<td>→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.</td>
</tr>
<tr>
<td>→ Beachten Sie die geltenden Vorschriften.</td>
</tr>
</tbody>
</table>

• Kürzen Sie das Spannbands (Rohrumfang + mindestens 120 mm).
• Positionieren Sie den Temperaturfühler am Rohr (siehe Abb. 6.57).
• Legen Sie das Spannbands um Temperaturfühler und Rohr.
• Schieben Sie das Spannbands durch das Spannschloss.
• Ziehen Sie das Spannbands fest.
• Ziehen Sie die Schraube des Spannschlosses fest.

Abb. 6.59: Schnellspannschloss
7 Anschluss

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (ATEX, IECEx)</td>
</tr>
<tr>
<td>Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.</td>
</tr>
<tr>
<td>→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUS).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (TR TS)</td>
</tr>
<tr>
<td>Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.</td>
</tr>
<tr>
<td>→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUSRU).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warnung!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montage, Anschluss und Inbetriebnahme von nicht autorisiertem und befähigtem Personal</td>
</tr>
<tr>
<td>Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.</td>
</tr>
<tr>
<td>→ Arbeiten am Messumformer dürfen nur von autorisiertem und befähigtem Personal durchgeführt werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeiten in Bergwerken oder engen Räumen</td>
</tr>
<tr>
<td>Vergiftungs-/Erstickungsgefahr durch austretende Gase, Verletzungsgefahr durch beengte Verhältnisse</td>
</tr>
<tr>
<td>→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.</td>
</tr>
<tr>
<td>→ Beachten Sie die geltenden Vorschriften.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warnung!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berühren spannungsführender Teile</td>
</tr>
<tr>
<td>Elektrischer Schlag oder Störlichtbögen können zu schweren Verletzungen führen. Das Messgerät kann beschädigt werden.</td>
</tr>
<tr>
<td>→ Bevor Arbeiten am Messumformer (z.B. Montage, Demontage, Anschluss, Inbetriebnahme) durchgeführt werden, muss der Messumformer von der Spannungsversorgung getrennt werden. Das Entfernen der internen Gerätesicherung ist dafür nicht ausreichend.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorsicht!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel</td>
</tr>
<tr>
<td>Das Nichtbeachten der Vorschriften kann zu schweren Verletzungen führen.</td>
</tr>
<tr>
<td>→ Bei allen Elektroarbeiten müssen die Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel beachtet werden.</td>
</tr>
</tbody>
</table>
7.1 Sensoren
Es wird empfohlen, die Kabel vor dem Anschluss der Sensoren von der Messstelle zum Messumformer zu legen, um die Anschlussstelle nicht zu belasten.

Hinweis!
Wenn Sensoren ausgetauscht oder hinzugefügt werden, muss auch der SENSPROM ausgetauscht oder hinzugefügt werden.

Abb. 7.1: Anschluss der Sensoren am Messumformer

1 – Sensoren Messkanal A
2 – Sensoren Messkanal B
3 – Sensoren Messkanal C
4 – Sensoren Messkanal D

7.1.1 Anschluss des Sensorkabels an den Messumformer

Wichtig!
Die Schutzart des Messumformers ist nur gewährleistet, wenn alle Kabel mit Hilfe der Kabelverschraubungen dicht montiert und das Gehäuse fest verschraubt ist.

7.1.1.1 Sensorkabel mit SMB-Steckern
- Entfernen Sie den Blindstopfen für den Anschluss des Sensorkabels.
- Führen Sie das Sensorkabel mit den SMB-Steckern in das Gehäuse ein.
- Fixieren Sie das Sensorkabel, indem Sie die Kabelverschraubung festziehen.
- Schließen Sie die SMB-Stecker an die Buchsen des Messumformers an.

Tab. 7.1: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_xV</td>
<td>SMB-Stecker (braunes Kabel, weiß markiert)</td>
</tr>
<tr>
<td>X_xR</td>
<td>SMB-Stecker (braunes Kabel, schwarz markiert)</td>
</tr>
</tbody>
</table>
Abb. 7.2: Anschluss des Sensorkabels mit SMB-Steckern an den Messumformer

1 – SMB-Stecker
2 – Kabelverschraubung

7.1.1.2 Sensorkabel mit Kunststoffkabelmantel und abisolierten Kabelenden

- Entfernen Sie den Blindstopfen für den Anschluss des Sensorkabels.
- Öffnen Sie die Kabelverschraubung des Sensorkabels. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Sensorkabel durch Überwurf und Einsatz.
- Konfektionieren Sie das Sensorkabel.
- Kürzen Sie den äußeren Schirm und kämmen Sie ihn über den Einsatz zurück.
- Drehen Sie die Dichtringseite des Körpers in das Gehäuse des Messumformers.
- Führen Sie das Sensorkabel in das Gehäuse ein.

Hinweis!

Für gute EMV-Eigenschaften ist es wichtig, einen guten elektrischen Kontakt des äußeren Schirms zum Überwurf (und damit zum Gehäuse) herzustellen.

- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
- Schließen Sie das Sensorkabel an die Klemmen des Messumformers an.
Tab. 7.2: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>xV+</td>
<td>Sensor [●] (Seele)</td>
</tr>
<tr>
<td>xV-</td>
<td>Sensor [●] (innerer Schirm)</td>
</tr>
<tr>
<td>xR-</td>
<td>Sensor [●] (innerer Schirm)</td>
</tr>
<tr>
<td>xR+</td>
<td>Sensor [●] (Seele)</td>
</tr>
</tbody>
</table>

Abb. 7.3: Anschluss des Sensorkabels mit Kunststoffkabelmantel und abisolierten Kabelenden an den Messumformer

1 – Überwurf
2 – Einsatz
3 – Körper
4 – zurückkämmter äußerer Schirm
7.1.1.3 Sensorkabel mit Edelstahlummantelung und abisolierten Kabelenden

- Entfernen Sie den Blindstopfen für den Anschluss des Sensorkabels.
- Führen Sie das Sensorkabel in das Gehäuse ein.
- Fixieren Sie das Sensorkabel, indem Sie die Kabelverschraubung festziehen.
- Schließen Sie das Sensorkabel an die Klemmen des Messumformers an.

Tab. 7.3: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>xV+</td>
<td>Sensor 🟠 (braunes Kabel, weiß markiert)</td>
</tr>
<tr>
<td>xV-</td>
<td>Sensor 🟥 (rotes Kabel)</td>
</tr>
<tr>
<td>xR-</td>
<td>Sensor 🟥 (rotes Kabel)</td>
</tr>
<tr>
<td>xR+</td>
<td>Sensor 🟠 (braunes Kabel)</td>
</tr>
</tbody>
</table>

Abb. 7.4: Anschluss des Sensorkabels mit Edelstahlummantelung und abisolierten Kabelenden an den Messumformer

1 – Kabelverschraubung
7.1.2 Anschluss des Verlängerungskabels an den Messumformer

Das Verlängerungskabel wird über den Anschluss der Sensoren an den Messumformer angeschlossen.
- Entfernen Sie den Blindstopfen für den Anschluss des Sensorkabels.
- Öffnen Sie die Kabelverschraubung des Verlängerungskabels. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Verlängerungskabel durch Überwurf und Einsatz.
- Konfektionieren Sie das Verlängerungskabel.
- Kürzen Sie den äußeren Schirm und kämmen Sie ihn über den Einsatz zurück.
- Drehen Sie die Dichtringseite des Körpers in das Gehäuse des Messumformers.
- Führen Sie das Verlängerungskabel in das Gehäuse ein.

Hinweis!
Für gute EMV-Eigenschaften ist es wichtig, einen guten elektrischen Kontakt des äußeren Schirms zum Überwurf (und damit zum Gehäuse) herzustellen.

- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
- Schließen Sie das Verlängerungskabel an die Klemmen des Messumformers an.

Tab. 7.4: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>xV+</td>
<td>weißes oder markiertes Kabel (Seele)</td>
</tr>
<tr>
<td>xV-</td>
<td>weißes oder markiertes Kabel (innerer Schirm)</td>
</tr>
<tr>
<td>xR-</td>
<td>braunes Kabel (innerer Schirm)</td>
</tr>
<tr>
<td>xR+</td>
<td>braunes Kabel (Seele)</td>
</tr>
</tbody>
</table>

Abb. 7.5: Anschluss des Verlängerungskabels an den Messumformer

1 – Überwurf
2 – Einsatz
3 – Körper
4 – zurückkämmter äußerer Schirm
5 – Verlängerungskabel
7.1.3 Anschluss des Sensorkabels an das Klemmengehäuse

7.1.3.1 Sensorkabel mit SMB-Steckern
• Entfernen Sie den Blindstopfen für den Anschluss des Sensorkabels.
• Führen Sie das Sensorkabel mit den SMB-Steckern in das Klemmengehäuse ein.
• Fixieren Sie das Sensorkabel, indem Sie die Kabelverschraubung festziehen.
• Schließen Sie die SMB-Stecker an die Buchsen des Klemmengehäuses an.

Tab. 7.5: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>XV</td>
<td>SMB-Stecker (braunes Kabel, weiß markiert)</td>
</tr>
<tr>
<td>XR</td>
<td>SMB-Stecker (braunes Kabel, schwarz markiert)</td>
</tr>
</tbody>
</table>

Abb. 7.6: Anschluss des Sensorkabels mit SMB-Steckern

1 – SMB-Stecker
2 – Kabelverschraubung

7.1.3.2 Sensorkabel mit Kunststoffkabelmantel und abisolierten Kabelenden
• Entfernen Sie den Blindstopfen für den Anschluss des Sensorkabels.
• Öffnen Sie die Kabelverschraubung des Sensorkabels. Der Einsatz bleibt im Überwurf.
• Schieben Sie das Sensorkabel durch Überwurf und Einsatz.
• Konfektionieren Sie das Sensorkabel.
• Kürzen Sie den äußeren Schirm und käm men Sie ihn über den Einsatz zurück.
• Drehen Sie die Dichtringseite des Körpers in das Klemmengehäuse.
• Führen Sie das Sensorkabel in das Klemmengehäuse ein.

Hinweis!
Für gute EMV-Eigenschaften ist es wichtig, einen guten elektrischen Kontakt des äußeren Schirms zum Überwurf (und damit zum Gehäuse) herzustellen.

• Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
• Schließen Sie das Sensorkabel an die Klemmen des Klemmengehäuses an.
7.1.3.3 Sensorkabel mit Edelstahlkabelmantel und abisolierten Kabelenden

- Entfernen Sie den Blindstopfen für den Anschluss des Sensorkabels.
- Führen Sie das Sensorkabel in das Klemmengehäuse ein.
- Fixieren Sie das Sensorkabel, indem Sie die Kabelverschraubung festziehen.
- Schließen Sie das Sensorkabel an die Klemmen des Klemmengehäuses an.

Tab. 7.7: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Sensor [] (Seele)</td>
</tr>
<tr>
<td>VS</td>
<td>Sensor [] (innerer Schirm)</td>
</tr>
<tr>
<td>RS</td>
<td>Sensor [] (innerer Schirm)</td>
</tr>
<tr>
<td>R</td>
<td>Sensor [] (Seele)</td>
</tr>
</tbody>
</table>

Abb. 7.7: Anschluss des Sensorkabels mit Kunststoffkabelmantel und abisolierten Kabelenden

1 – Überwurf
2 – Einsatz
3 – Körper
4 – zurückkämmter äußerer Schirm
7.1.4 Anschluss des Verlängerungskabels an das Klemmengehäuse

7.1.4.1 Anschluss ohne Potentialtrennung (Standard)

Der Anschluss des Verlängerungskabels an das Klemmengehäuse ohne Potentialtrennung stellt sicher, dass Sensor, Klemmengehäuse und Messumformer auf dem gleichen Potential liegen. Das Verlängerungskabel sollte immer so angeschlossen werden, insbesondere wenn in der näheren Umgebung des Verlängerungskabels Starkstromkabel verlegt sind. Wenn die Erdung auf gleichem Potential nicht sichergestellt werden kann, siehe Abschnitt 7.1.4.2.

- Entfernen Sie den Blindstopfen für den Anschluss des Verlängerungskabels.
- Öffnen Sie die Kabelverschraubung des Verlängerungskabels. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Verlängerungskabel durch Überwurf und Einsatz.
- Konfektionieren Sie das Verlängerungskabel.
- Kürzen Sie den äußeren Schirm und kämmen Sie ihn über den Einsatz zurück.
- Drehen Sie die Dichtringseite des Körpers in das Klemmengehäuse.
- Führen Sie das Verlängerungskabel in das Klemmengehäuse ein.

Hinweis!

Für gute EMV-Eigenschaften ist es wichtig, einen guten elektrischen Kontakt des äußeren Schirms zum Überwurf (und damit zum Gehäuse) herzustellen.

- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
- Schließen Sie das Verlängerungskabel an die Klemmen des Klemmengehäuses an.
7 Anschluss
7.1 Sensoren

Tab. 7.8: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss (Verlängerungskabel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>weißes oder markiertes Kabel (Seele)</td>
</tr>
<tr>
<td>TVS</td>
<td>weißes oder markiertes Kabel (innerer Schirm)</td>
</tr>
<tr>
<td>TRS</td>
<td>braunes Kabel (innerer Schirm)</td>
</tr>
<tr>
<td>TR</td>
<td>braunes Kabel (Seele)</td>
</tr>
<tr>
<td>Kabelverschraubung</td>
<td>äußerer Schirm</td>
</tr>
</tbody>
</table>

Abb. 7.9: Anschluss des Verlängerungs- und Sensorkabels an das Klemmengehäuse

1 – Verlängerungskabel
2 – zurückgekämmter äußerer Schirm
3 – Überwurf
4 – Einsatz
5 – Körper
6 – Anschluss des Verlängerungkabels
7 – Anschluss des Sensorkabels
7.1.4.2 Anschluss mit Potentialtrennung

Für Messanordnungen, bei denen Klemmengehäuse und Sensoren elektrisch voneinander isoliert werden müssen, siehe Dokument TIFLUXUS_GalvSep.

- Entfernen Sie den Blindstopfen für den Anschluss des Verlängerungskabels.
- Öffnen Sie die Kabelverschraubung des Verlängerungskabels. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Verlängerungskabel durch Überwurf, Einsatz und Körper.
- Führen Sie das Verlängerungskabel in das Klemmengehäuse ein.
- Konfektionieren Sie das Verlängerungskabel.
- Kürzen Sie den äußeren Schirm und kämmen Sie ihn zurück.
- Ziehen Sie das Verlängerungskabel so weit zurück, bis der zurückgekämmtete äußere Schirm unter der Schirmklemme liegt. Das Verlängerungskabel muss bis zur Schirmklemme vollständig isoliert sein.
- Drehen Sie die Dichtringseite des Körpers in das Klemmengehäuse.
- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.

Wichtig!

Beachten Sie die max. zulässige Spannung von 60 V DC zwischen den Erdpotentialen.

Wichtig!

Der äußere Schirm des Verlängerungskabels darf keinen elektrischen Kontakt zum Klemmengehäuse haben. Das Verlängerungskabel muss daher bis zur Schirmklemme vollständig isoliert sein.

- Fixieren Sie das Verlängerungskabel und den äußeren Schirm an der Schirmklemme.
- Schließen Sie das Verlängerungskabel an die Klemmen des Klemmengehäuses an.

Tab. 7.9: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss (Verlängerungskabel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>weißes oder markiertes Kabel (Seele)</td>
</tr>
<tr>
<td>TVS</td>
<td>weißes oder markiertes Kabel (innerer Schirm)</td>
</tr>
<tr>
<td>TRS</td>
<td>braunes Kabel (innerer Schirm)</td>
</tr>
<tr>
<td>TR</td>
<td>braunes Kabel (Seele)</td>
</tr>
<tr>
<td>Schirmklemme</td>
<td>äußerer Schirm</td>
</tr>
</tbody>
</table>
Abb. 7.10: Anschluss des Verlängerungs- und Sensorkabels an das Klemmengehäuse

1 – Verlängerungskabel
2 – äußerer Schirm
3 – Schirmklemme
4 – Überwurf
5 – Einsatz
6 – Körper
7 – Anschluss des Verlängerungskabels
8 – Anschluss des Sensorkabels
7.1.5 SENSROM

Der SENSPROM enthält wichtige Sensordaten für den Betrieb des Messumformers mit den Sensoren. Wenn Sensoren ausgetauscht oder hinzugefügt werden, muss auch der SENSPROM ausgetauscht oder hinzugefügt werden.

Hinweis!

| Die Seriennummern von SENSPROM und Sensor müssen identisch sein. Ein falscher oder falsch angeschlossener SENSPROM führt zu falschen Messwerten oder zu Messausfall.

Der SENSPROM wird an die Klemmen des Messumformers angeschlossen.

- Trennen Sie den Messumformer von der Spannungsversorgung.
- Schließen Sie jeden SENSPROM an der entsprechenden Klemme des Messumformers an.
- Schließen Sie den Messumformer an die Spannungsversorgung an.
- Gehen Sie den Programmzweig **Parameter** einmal vollständig durch.
- Starten Sie die Messung.

Abb. 7.11: SENSPROM

![Diagramm des SENSPROM](image_url)

1 – SENSPROM Messkanal A
2 – SENSPROM Messkanal B
3 – SENSPROM Messkanal C
4 – SENSPROM Messkanal D
7.2 Spannungsversorgung

Die Installation der Spannungsversorgung erfolgt durch den Betreiber. Der Betreiber muss einen Überstromschutz (Sicherung oder ähnliche Einrichtung) vorsehen, der bei einer unzulässig hohen Stromaufnahme alle stromführenden Leiter trennt. Die Impedanz der Schutzerdung muss niederohmig sein, um die Berührungsspannung nicht über die zulässige Obergrenze ansteigen zu lassen. Die Potentialausgleichsklemme dient der Funktionserdung des Messumformers.

Wichtig!

Die Schutzart des Messumformers ist nur gewährleistet, wenn das Spannungsversorgungskabel fest und spielfrei in der Kabelverschraubung sitzt.

- Schließen Sie das Spannungsversorgungskabel an den Messumformer an (siehe Abschnitt 7.2.1, Abb. 7.12 und Tab. 7.10).

Abb. 7.12: Anschluss der Spannungsversorgung am Messumformer

Tab. 7.10: Klemmenbelegung

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Anschluss AC</th>
<th>Klemme</th>
<th>Anschluss DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Phase 100…230 V (+)</td>
<td>N</td>
<td>Null (-)</td>
</tr>
<tr>
<td>PE</td>
<td>Schutzerde</td>
<td>PE</td>
<td>Schutzerde</td>
</tr>
</tbody>
</table>
7.2.1 Kabelanschluss
• Entfernen Sie den Blindstopfen für den Anschluss des Kabels am Messumformer.
• Konfektionieren Sie das Kabel mit einer Kabelverschraubung.

Das verwendete Kabel muss einen Aderquerschnitt von 0.25…2.5 mm² haben.
• Schieben Sie das Kabel durch Überwurf, Einsatz und Körper der Kabelverschraubung.
• Führen Sie das Kabel in das Gehäuse des Messumformers ein.
• Drehen Sie die Dichtringseite des Körpers in das Gehäuse des Messumformers.
• Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
• Schließen Sie das Kabel an die Klemmen des Messumformers an.

Abb. 7.13: Kabelverschraubung

1 – Überwurf
2 – Einsatz
3 – Körper

7.3 Ausgänge

Wichtig!
Die max. zulässige Spannung sowohl zwischen den Ausgängen als auch gegen PE beträgt 60 V DC (dauerhaft).

• Schließen Sie das Ausgangskabel an den Messumformer an (siehe Abschnitt 7.2.1, Abb. 7.14 und Abschnitt 7.3.1).

Abb. 7.14: Anschluss der Ausgänge am Messumformer
7.3.1 Beschaltung der Ausgänge

Tab. 7.11: Schaltbarer Stromausgang Ix

<table>
<thead>
<tr>
<th>Messumformer</th>
<th>externe Beschaltung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>interne Schaltung</td>
<td>Anschluss</td>
<td></td>
</tr>
<tr>
<td>aktiv</td>
<td></td>
<td>$R_{\text{ext}} < 530 , \Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{\text{max}} = 28 , \text{V DC}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fehlerstrom einstellbar (kein gültiger Messwert, keine Messung):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{fault}} = 3.2 \ldots 24 , mA$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardwarefehlerstrom: $I_{\text{fault}} = 3.2 , mA$</td>
</tr>
<tr>
<td>passiv</td>
<td></td>
<td>$U_{\text{ext}} \leq 30 , \text{V DC}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{\text{ext}} > 0.024 , \text{A} \cdot R_{\text{ext}} , [\Omega] + 9 , \text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{\text{ext}} < 875 , \Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beispiel:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{\text{ext}} = 20 , \text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{\text{ext}} < 458 , \Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fehlerstrom einstellbar (kein gültiger Messwert, keine Messung):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{fault}} = 3.2 \ldots 24 , mA$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardwarefehlerstrom: $I_{\text{fault}} = 3.2 , mA$</td>
</tr>
</tbody>
</table>

Tab. 7.12: Schaltbarer Stromausgang Ix/HART

<table>
<thead>
<tr>
<th>Messumformer</th>
<th>externe Beschaltung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>interne Schaltung</td>
<td>Anschluss</td>
<td></td>
</tr>
<tr>
<td>aktiv</td>
<td></td>
<td>$250 , \Omega < R_{\text{ext}} < 530 , \Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{\text{max}} = 28 , \text{V DC}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fehlerstrom einstellbar (kein gültiger Messwert, keine Messung):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{fault}} = 3.5 \ldots 22 , mA$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardwarefehlerstrom: $I_{\text{fault}} = 3.2 , mA$</td>
</tr>
<tr>
<td>passiv</td>
<td></td>
<td>$U_{\text{ext}}: 9 \ldots 30 , \text{V DC}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{\text{ext}} > 0.024 , \text{A} \cdot R_{\text{ext}} , [\Omega] + 9 , \text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{\text{ext}}: 250 \ldots 875 , \Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beispiel:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{\text{ext}} = 20 , \text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$250 , \Omega < R_{\text{ext}} < 458 , \Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fehlerstrom einstellbar (kein gültiger Messwert, keine Messung):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{fault}} = 3.2 \ldots 22 , mA$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardwarefehlerstrom: $I_{\text{fault}} = 3.2 , mA$</td>
</tr>
</tbody>
</table>
Für alle Beschaltungen gilt:

- \(R_{\text{ext}} \) ist die Summe aller ohmschen Widerstände im Stromkreis (z.B. Leiterwiderstand, Widerstand des Amperemeters/Voltmeters).
- Die Anzahl, der Typ und die Anschlüsse der Ausgänge sind auftragsspezifisch.
- Die Klemmenbelegung wird beim Konfigurieren der Ausgänge am Messumformer angezeigt.

7.4 Eingänge

Abb. 7.15: Anschluss der Eingänge am Messumformer

Tab. 7.13: Digitalausgang (nach IEC 60947-5-6 (NAMUR))

<table>
<thead>
<tr>
<th>Messumformer intern</th>
<th>externe Beschaltung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beschaltung 1</td>
<td>(R_1 = 1 , \text{kΩ})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(U_{\text{ext}} = 8.2 , \text{V})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_c = 1 , \text{kΩ})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_{\text{max}} = 10 , \text{kHz})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{\text{pmin}} = 50 , \mu\text{s})</td>
</tr>
<tr>
<td></td>
<td>Beschaltung 2</td>
<td>(R_{\text{ext}} = 8.2 , \text{V})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_c = 1 , \text{kΩ})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_{\text{max}} = 10 , \text{kHz})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{\text{pmin}} = 50 , \mu\text{s})</td>
</tr>
</tbody>
</table>
7.4.1 Beschaltung der Eingänge

Wichtig!

Achten Sie auf die richtige Polung, da sonst die Stromquelle beschädigt werden kann. Ein dauerhafter Kurzschluss kann zur Zerstörung des Stromeingangs führen.

Für den Anschluss des Eingangskabels an den Messumformer siehe Abschnitt 7.2.1 und Abb. 7.15.

Tab. 7.14: Schaltbarer Stromeingang Ix

<table>
<thead>
<tr>
<th>Messumformer</th>
<th>externe Beschaltung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>interne Schaltung</td>
<td>Anschluss</td>
<td></td>
</tr>
<tr>
<td>aktiv</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | Rint = 75 Ω
| | | | Imax ≤ 30 mA
| | | | I = 0…20 mA (Messbereich)
| | | | Umax = 28 V (unbelastet)
| | | | Umin = 22.9 V - (Rint · I)
| | | | Umin = 21.4 V
| | | | Der Stromeingang ist galvanisch vom Messumformer getrennt.
| passiv | | |
| | | | Rint = 35 Ω
| | | | Umax = 26 V
| | | | Imax ≤ 24 mA
| | | | I = 0…20 mA (Messbereich)
| | | | Der Stromeingang ist galvanisch vom Messumformer getrennt.

Für alle Beschaltungen gilt:
- Die Anzahl, der Typ und die Anschlüsse der Eingänge sind auftragsspezifisch.
- Die Klemmenbelegung wird beim Konfigurieren der Eingänge am Messumformer angezeigt.
7.5 Temperaturfühler

An die Eingänge des Messumformers können die Temperaturfühler Pt100/Pt1000 (4-Leiter-Technik) angeschlossen werden (Option).

Abb. 7.16: Anschluss der Temperaturfühler am Messumformer

1 – Anschluss des Temperaturfühlers

7.5.1 Beschaltung der Temperatureingänge

Tab. 7.15: Temperatureingang – nicht eigensicher

<table>
<thead>
<tr>
<th>Messumformer interne Schaltung</th>
<th>externe Beschaltung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Pt100/Pt1000</td>
<td>(4-Leiter-Technik)</td>
</tr>
<tr>
<td>a</td>
<td>Der Eingang ist galvanisch vom Messumformer getrennt.</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Die Anzahl, der Typ und die Anschlüsse der Eingänge sind auftragsspezifisch.
- Die Klemmenbelegung wird beim Konfigurieren der Eingänge am Messumformer angezeigt.
7.5 Temperaturfühler

7.5.2 Direktanschluss des Temperaturfühlers

- Entfernen Sie den Blindstopfen für den Anschluss des Temperaturfühlers.
- Öffnen Sie die Kabelverschraubung des Temperaturfühlers. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Kabel des Temperaturfühlers durch Überwurf, Einsatz, Körper und Reduzierung.
- Konfektionieren Sie das Kabel.
- Führen Sie das Kabel in das Gehäuse ein.
- Drehen Sie die Dichtringseite der Reduzierung in das Gehäuse des Messumformers.
- Drehen Sie den Körper in die Reduzierung.
- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
- Schließen Sie den Temperaturfühler an die Klemmen des Messumformers an.

Abb. 7.17: Konfektionierung des Temperaturfühlers

1 – Überwurf
2 – Einsatz
3 – Körper
4 – Reduzierung
5 – Dichtringseite

Tab. 7.16: Anschlusssysteme
7.5.3 Anschluss mit Verlängerungskabel

Anschluss des Verlängerungskabels an den Messumformer

- Entfernen Sie den Blindstopfen für den Anschluss des Temperaturfühlers.
- Öffnen Sie die Kabelverschraubung des Verlängerungskabels. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Verlängerungskabel durch Überwurf, Einsatz, Körper und Reduzierung.
- Konfektionieren Sie das Verlängerungskabel.
- Kürzen Sie den äußeren Schirm und kämmen Sie ihn über den Einsatz zurück.
- Führen Sie das Verlängerungskabel in das Gehäuse ein.
- Drehen Sie die Dichtringseite der Reduzierung in das Gehäuse des Messumformers.
- Drehen Sie den Körper in die Reduzierung.
- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
- Schließen Sie das Verlängerungskabel an die Klemmen des Messumformers an.

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Verlängerungskabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>rot</td>
</tr>
<tr>
<td>a</td>
<td>grau</td>
</tr>
<tr>
<td>b</td>
<td>blau</td>
</tr>
<tr>
<td>b</td>
<td>weiß</td>
</tr>
</tbody>
</table>

Tab. 7.17: Klemmenbelegung (Messumformer)

Die Klemmenbelegung wird beim Konfigurieren der Eingänge am Messumformer angezeigt.

Anschluss des Verlängerungskabels an das Klemmengehäuse

- Entfernen Sie den Blindstopfen für den Anschluss des Verlängerungskabels.
- Öffnen Sie die Kabelverschraubung des Verlängerungskabels. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Verlängerungskabel durch Überwurf und Einsatz.
- Konfektionieren Sie das Verlängerungskabel.
- Kürzen Sie den äußeren Schirm und kämmen Sie ihn über den Einsatz zurück.
- Drehen Sie die Dichtringseite der Reduzierung in das Klemmengehäuse.
- Drehen Sie den Körper in die Reduzierung.
- Führen Sie das Verlängerungskabel in das Klemmengehäuse ein.
- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
- Schließen Sie das Verlängerungskabel an die Klemmen des Klemmengehäuses an.

Abb. 7.18: Konfektionierung des Verlängerungskabels
Abb. 7.19: Klemmengehäuse

![Diagram of Klemmengehäuse](image)

1 – Anschluss des Verlängerungskabels
2 – Anschluss des Temperaturfühlers

Anschluss des Temperaturfühlers an das Klemmengehäuse

- Entfernen Sie den Blindstopfen für den Anschluss des Temperaturfühlers.
- Öffnen Sie die Kabelverschraubung des Temperaturfühlers. Der Einsatz bleibt im Überwurf.
- Schieben Sie das Kabel des Temperaturfühlers durch Überwurf und Einsatz.
- Konfektionieren Sie das Kabel.
- Kürzen Sie den äußeren Schirm und kämmen Sie ihn über den Einsatz zurück.
- Drehen Sie die Dichtringseite der Reduzierung in das Klemmengehäuse.
- Drehen Sie den Körper in die Reduzierung.
- Führen Sie das Kabel in das Klemmengehäuse ein.
- Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
- Schließen Sie den Temperaturfühler an die Klemmen des Klemmengehäuses an.

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Verlängerungskabel (KL2)</th>
<th>Temperaturfühler (KL1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rot</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>grau</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>blau</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>weiß</td>
<td></td>
</tr>
</tbody>
</table>
7.6 Serviceschnittstellen

7.6.1 USB-Schnittstelle
Über die USB-Schnittstelle kann der Messumformer direkt mit einem PC verbunden werden.
• Schließen Sie das USB-Kabel an die USB-Schnittstelle des Messumformers und an den PC an.

Abb. 7.20: Anschluss des USB-Kabels

7.6.2 LAN-Schnittstelle
Der Messumformer kann über das LAN-Kabel an einen PC oder an das lokale Netzwerk angeschlossen werden.

Abb. 7.21: Anschluss des LAN-Kabels

• Entfernen Sie den Blindstopfen für den Anschluss des Kabels am Messumformer.
• Öffnen Sie die Kabelverschraubung des LAN-Kabels. Der Einsatz bleibt im Überwurf.
• Schieben Sie das Kabel durch Überwurf, Einsatz, Körper und Dichtring (Dichtring: nur für Kabelverschraubung M20, nicht für Kabelverschraubung 1/2 NPS).
• Führen Sie das Kabel in das Gehäuse des Messumformers ein.
• Schieben Sie das Kabel durch die Ferritmutter.
• Konfektionieren Sie das Kabel (siehe mitgelieferte Dokumente des Herstellers).
• Montieren Sie den Stecker (siehe mitgelieferte Dokumente des Herstellers).
• Stecken Sie den Stecker in die Buchse der LAN-Schnittstelle.
• Positionieren Sie das Kabel im Gehäuse, wie in Abb. 7.21 dargestellt.
• Fixieren Sie die Kabelverschraubung, indem Sie den Überwurf auf den Körper drehen.
• Fixieren Sie das Kabel, indem Sie die Kabelverschraubung mit der Ferritmutter festziehen.

Abb. 7.22: Kabelverschraubung

1 – Überwurf
2 – Einsatz
3 – Körper
4 – Dichtring (nur für Kabelverschraubung M20, nicht für Kabelverschraubung 1/2 NPS)
5 – Gehäusewand
6 – Ferritmutter
8 Inbetriebnahme

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (ATEX, IECEx)

Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.

→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUS).

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (TR TS)

Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.

→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUSRU).

Warnung!

Montage, Anschluss und Inbetriebnahme von nicht autorisiertem und befähigtem Personal

Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.

→ Arbeiten am Messumformer dürfen nur von autorisiertem und befähigtem Personal durchgeführt werden.

Gefahr!

Arbeiten in Bergwerken oder engen Räumen

Vergiftungs-/Erstickungsgefahr durch austretende Gase, Verletzungsgefahr durch beengte Verhältnisse

→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.

→ Beachten Sie die geltenden Vorschriften.

Vorsicht!

Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel

Das Nichtbeachten der Vorschriften kann zu schweren Verletzungen führen.

→ Bei allen Elektroarbeiten müssen die Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel beachtet werden.

Vorsicht!

Warnung vor schweren Verletzungen durch heiße oder sehr kalte Bauteile

Das Berühren von heißen oder sehr kalten Bauteilen kann zu schweren Verletzungen führen (Verbrennungen/Erfrierungen).

→ Alle Montage-, Installations- und Anschlussarbeiten müssen abgeschlossen sein.

→ Während der Messung dürfen keine Arbeiten mehr an der Messstelle durchgeführt werden.

→ Beachten Sie bei der Montage die Umgebungsbedingungen an der Messstelle.

→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.

→ Beachten Sie die geltenden Vorschriften.
8 Inbetriebnahme
8.1 Einstellungen bei erster Inbetriebnahme

Bei der ersten Inbetriebnahme des Messumformers müssen folgende Einstellungen vorgenommen werden:

• Sprache
• Uhrzeit/Datum
• Maßeinheit

Diese Anzeigen erscheinen nur nach dem ersten Einschalten oder nach einer Initialisierung des Messumformers.

Hinweis!

Einstellungen bei erster Inbetriebnahme

Sprache

Die verfügbaren Sprachen des Messumformers werden angezeigt.

• Wählen Sie eine Sprache aus.
• Drücken Sie ENTER.

Die Menüs werden in der gewählten Sprache angezeigt.

Zeit einstellen

Die aktuelle Uhrzeit wird angezeigt.

• Drücken Sie ENTER, um die Uhrzeit zu bestätigen, oder geben Sie die aktuelle Uhrzeit über das Ziffernfeld ein.
• Drücken Sie ENTER.

Datum einstellen

Das aktuelle Datum wird angezeigt.

• Drücken Sie ENTER, um das Datum zu bestätigen, oder geben Sie das aktuelle Datum über das Ziffernfeld ein.
• Drücken Sie ENTER.

Maßeinheiten

• Wählen Sie **Metrisch** oder **Imperial**.
• Drücken Sie ENTER.

Region Kanada

• Wählen Sie **Ja**, wenn der Messumformer in der Region Kanada zum Einsatz kommt.
• Drücken Sie ENTER.

Diese Anzeige erscheint nur, wenn **Imperial** ausgewählt ist.
8.2 Einschalten

Sobald der Messumformer mit der Spannungsversorgung verbunden ist, wird das Menü in der eingestellten Sprache angezeigt. Die Sprache der Anzeige kann geändert werden.

Hinweis!

Während der Messung können die Parameter nicht geändert werden. Wenn die Parameter geändert werden sollen, muss die Messung gestoppt werden.

Wenn der Messumformer während der Messung ausgeschaltet wurde, erscheint nach dem Anschluss des Messumformers an die Spannungsversorgung die Meldung Messung gestartet. Die Messung wird mit den zuletzt eingestellten Parametern fortgesetzt.

Durch Drücken der Taste können im Programmzweig Messung die Messung gestoppt oder die aktuelle Parametereinstellung angezeigt werden.

Betriebszustandsanzeige

Der Betriebszustand wird durch die LEDs neben dem Display angezeigt.

Tab. 8.1: Betriebszustand des Messumformers

<table>
<thead>
<tr>
<th>LED aus</th>
<th>Messumformer im Ruhezustand</th>
<th>LED leuchtet grün</th>
<th>Signalqualität des Messkanals ausreichend für eine Messung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED leuchtet rot</td>
<td>Signalqualität des Messkanals nicht ausreichend für eine Messung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3 Programmzweige

Die folgende Darstellung zeigt die Programmzweige. Für eine detaillierte Übersicht der Menüstruktur siehe Anhang A.
8.4 Sprachauswahl

Die Bediensprache des Messumformers kann ausgewählt werden:
• Wählen Sie den Menüpunkt Sprache.
• Drücken Sie ENTER.
• Wählen Sie in der Auswahlliste die Sprache.
• Drücken Sie ENTER.

Die Sprachauswahl kann auch über die Eingabe eines HotCodes vorgenommen werden.

8.5 Initialisierung

Bei einer Initialisierung (INIT) des Messumformers werden alle Einstellungen auf Werkseinstellungen zurückgesetzt.

Eine Initialisierung wird folgendermaßen ausgeführt:
• Beim Einschalten des Messumformers: Halten Sie die Tasten und C gedrückt.
• Während des Betriebs des Messumformers: Drücken Sie gleichzeitig die Tasten , C und ENTER. Lassen Sie Taste ENTER los. Halten Sie die Tasten und C weiterhin gedrückt.

Bei einer Initialisierung wird geprüft, ob die Tastensperre aktiviert ist. Falls ja, muss sie deaktiviert werden.
• Geben Sie den 6-stelligen Code für die Tastensperre ein.
• Drücken Sie ENTER.

Wenn eine Messung läuft, wird diese gestoppt.

Die Frage, ob die initialen Einstellungen vorgenommen werden sollen, erscheint.

Wenn Sie Ja ausgewählt haben, erscheinen folgende Dialoge für die Einstellungen:
• Sprache
• Datum/Zeit
• Maßeinheiten
• Messwerte löschen
• Snaps löschen
• Ben.-def. Stoffe lösch. (es werden alle benutzerdefinierten Materialien und Fluide, die nach Auslieferung des Geräts gespeichert wurden, gelöscht)
• Mengenz. zurück.

Die Initialisierung kann auch mit dem HotCode 909000 gestartet werden.

8.6 Uhrzeit und Datum

Der Messumformer hat eine batteriebetriebene Uhr. Messwerte werden automatisch mit Datum und Zeit gespeichert.
• Wählen Sie den Menüpunkt Datum/Zeit.
• Geben Sie die aktuelle Uhrzeit ein.
• Drücken Sie ENTER.
• Geben Sie das aktuelle Datum ein.
• Drücken Sie ENTER.
8.7 Informationen zum Messumformer

Sonderfunktionen\Systemeinstellungen\Info Messumformer

- Wählen Sie den Menüpunkt **Info Messumformer**.
- Drücken Sie **ENTER**.
- Drücken Sie Taste **5** oder **8**, um durch die Liste zu scrollen.
- Drücken Sie Taste **5**, um zum Menüpunkt **Systemeinstellungen** zurückzukehren.

Folgende Informationen zum Messumformer werden angezeigt:

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktname</td>
<td>Bezeichnung des Messumformers</td>
</tr>
<tr>
<td>Seriennummer</td>
<td>Seriennummer des Messumformers</td>
</tr>
<tr>
<td>Firmwareversion</td>
<td>Versionsnummer der installierten Firmware</td>
</tr>
<tr>
<td>Firmwaredatum</td>
<td>Erstellungsdatum der installierten Firmware</td>
</tr>
<tr>
<td>Herstellungsdatum</td>
<td>Herstellungsdatum des Messumformers</td>
</tr>
<tr>
<td>MAC-Adresse</td>
<td>MAC-Adresse des Messumformers</td>
</tr>
<tr>
<td>Service-TCP-Port</td>
<td>TCP-Port des Messumformers</td>
</tr>
<tr>
<td>Verifikations-Log</td>
<td>Status des Verifizierungsspeichers</td>
</tr>
</tbody>
</table>
9 Messung

9.1 Parametereingabe

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (ATEX, IECEx)
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUS).

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (TR TS)
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUSRU).

Vorsicht!

Warnung vor schweren Verletzungen durch heiße oder sehr kalte Bauteile
Das Berühren von heißen oder sehr kalten Bauteilen kann zu schweren Verletzungen führen (Verbrennungen/Erfrierungen).
→ Alle Montage-, Installations- und Anschlussarbeiten müssen abgeschlossen sein.
→ Während der Messung dürfen keine Arbeiten mehr an der Messstelle durchgeführt werden.
→ Beachten Sie bei der Montage die Umgebungsbedingungen an der Messstelle.
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

Hinweis!

Die gleichzeitige Parametereingabe über die Tastatur des Messumformers und die USB-, LAN- oder Prozessschnittstelle muss vermieden werden. Die über diese Schnittstellen empfangenen Parametersätze überschreiben die aktuelle Parametrierung des Messumformers.

Die Rohr- und Fluidparameter werden für die ausgewählte Messstelle eingegeben. Die Parameterbereiche sind durch die technischen Eigenschaften der Sensoren und des Messumformers begrenzt.

- Wählen Sie den Programmzweig Parameter.
- Drücken Sie ENTER.

9.1.1 Auswahl der Sensoren

Hinweis!

Die Sensoren müssen in Abhängigkeit von den Applikationsparametern gewählt werden (siehe Technische Spezifikation).

Parameter\Clamp-on-Sensor CDP2E52

- Der Sensor (hier: CDP2E52), der am Messumformer angeschlossen ist, wird angezeigt.
- Drücken Sie ENTER.

Die Anzeige erscheint nur, wenn ein SENSPROM am Messumformer angeschlossen ist.

Parameter\Angeschl. Sensor

Die Parameter können auch ohne angeschlossene Sensoren und SENSPROM eingegeben werden.

- Wählen Sie den Listeneintrag Angeschl. Sensor.
- Drücken Sie ENTER.

Wenn keine Sensoren und kein SENSPROM am Messumformer angeschlossen sind, erscheint die Anzeige Sensor nicht gefunden.
- Drücken Sie ENTER.

Parameter\Sensor auswählen

- Wählen Sie den Listeneintrag Sensor auswählen, um Standardsensoren zu verwenden, die im Messumformer gespeichert sind.
- Wählen Sie den Sensor aus.
- Drücken Sie ENTER.

Die Anzeige erscheint nicht, wenn Sensoren und SENSPROM am Messumformer angeschlossen sind.
9 Messung
9.1 Parametereingabe

9.1.2 Eingeben der Rohrparameter

Rohraußendurchmesser

- Geben Sie den Rohraußendurchmesser ein.
- Drücken Sie ENTER.

Es ist möglich, statt des Rohraußendurchmessers den Rohrumfang einzugeben.

Rohrumfang

- Aktivieren Sie die Eingabe des Rohrumfangs im Menüpunkt Sonderfunktionen\Dialoge/Menu\Rohrumfang.
- Drücken Sie im Menüpunkt Außendurchmesser Taste →. Der Menüpunkt Rohrumfang wird angezeigt.
- Geben Sie den Rohrumfang ein.
- Drücken Sie ENTER.

Wenn der Rohraußendurchmesser eingegeben werden soll, drücken Sie Taste →. Der Menüpunkt Außendurchmesser wird angezeigt.

Rohrmaterial

- Wählen Sie das Rohrmaterial aus.
- Wenn das Material nicht in der Auswahlliste enthalten ist, wählen Sie den Listeneintrag Anderes Material.
- Drücken Sie ENTER.

Schallgeschwindigkeit des Rohrmaterials

- Geben Sie die Schallgeschwindigkeit des Rohrmaterials ein.

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenn ein Standardsensor ausgewählt wird, werden keine sensorspezifischen Kalibrierwerte berücksichtigt. Es ist mit einer höheren Ungenauigkeit zu rechnen.</td>
</tr>
</tbody>
</table>

- Drücken Sie ENTER.
- Wählen Sie Transversalwelle oder Longitudinalwelle.
- Drücken Sie ENTER.

Diese Anzeigen erscheinen nur, wenn Anderes Material ausgewählt ist.
Für die Schallgeschwindigkeit einiger Materialien siehe Anhang C.
Rauigkeit des Rohrmaterials

Das Strömungsprofil des Fluids wird von der Rauigkeit der Rohrinnenwand beeinflusst. Die Rauigkeit wird zur Berechnung des Profilkorrekturfaktors verwendet.
In den meisten Fällen lässt sich die Rauigkeit nicht genau bestimmen und muss deshalb geschätzt werden.
• Wenn das Rohr eine Auskleidung hat, drücken Sie ENTER. Die Rauigkeit der Auskleidung geht dann mit in die Berechnung ein.
• Wenn das Rohr keine Auskleidung hat, geben Sie die Rauigkeit des Rohrmaterials ein. Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn Anderes Material ausgewählt ist.
Für die Rauigkeit einiger Materialien siehe Anhang C.

Wanddicke

Parameter\Rohrwanddicke

• Geben Sie die Rohrwanddicke ein.
• Drücken Sie ENTER.

Auskleidung

Parameter\Auskleidung

• Wählen Sie Ja, wenn das Rohr eine Auskleidung hat. Wählen Sie Nein, wenn es keine Auskleidung hat.
• Drücken Sie ENTER.

Auskleidungsmaterial

Parameter\Auskleidungsmaterial

• Wählen Sie dasAuskleidungsmaterial aus.
• Drücken Sie ENTER.
• Wenn das Auskleidungsmaterial nicht in der Auswahlliste enthalten ist, wählen Sie den Listeneintrag Anderes Material.
• Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn Ja im Menüpunkt Auskleidung ausgewählt ist.

Schallgeschwindigkeit des Auskleidungsmaterials

Parameter\Auskleidungsmaterial\Anderes Material\c Material

• Geben Sie die Schallgeschwindigkeit des Auskleidungsmaterials ein.

Hinweis!
Für die Auskleidungsmaterialien gibt es 2 Schallgeschwindigkeiten, die longitudinale und die transversale. Geben Sie die Schallgeschwindigkeit ein, die näher an 2500 m/s liegt.

• Drücken Sie ENTER.
• Wählen Sie Transversalwelle oder Longitudinalwelle.
• Drücken Sie ENTER.
Diese Anzeige erscheinen nur, wenn Anderes Material ausgewählt ist.
Rauigkeit des Auskleidungsmaterials

- Geben Sie die Rauigkeit des Auskleidungsmaterials ein.
- Drücken Sie ENTER.

Diese Anzeige erscheint nur, wenn Anderes Material ausgewählt ist.

Auskleidungsdicke

- Geben Sie die Dicke der Auskleidung ein.
- Drücken Sie ENTER.

Diese Anzeige erscheint nur, wenn Ja im Menüpunkt Auskleidung ausgewählt ist.

Rauigkeit

- Wenn Automatisch ausgewählt ist, werden die im Messumformer hinterlegten Rauigkeitswerte verwendet.
- Wenn Benutzerdefiniert ausgewählt ist, muss ein Rauigkeitswert eingegeben werden.
- Drücken Sie ENTER.

Die Anzeige erscheint nicht, wenn im Menüpunkt Rohrmaterial oder Auskleidungmaterial der Listeneintrag Anderes Material ausgewählt ist.

9.1.3 Eingeben der Fluidparameter

Fluid

- Wählen Sie das Fluid aus der Auswahlliste.
- Wenn das Fluid nicht in der Auswahlliste enthalten ist, wählen Sie den Listeneintrag Anderes Fluid.
- Drücken Sie ENTER.

Schallgeschwindigkeit des Fluids

- Geben Sie die mittlere Schallgeschwindigkeit des Fluids ein.
- Drücken Sie ENTER.

Diese Anzeige erscheint nur, wenn Anderes Fluid ausgewählt ist.
Schallgeschwindigkeitsbereich des Fluids

- Wählen Sie Automatisch, wenn der Bereich um die mittlere Schallgeschwindigkeit auf ±10 % der eingegebenen Schallgeschwindigkeit gesetzt werden soll.
- Wählen Sie Benutzerdefiniert, wenn der Bereich um die mittlere Schallgeschwindigkeit eingegeben werden soll.
- Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn Anderes Fluid ausgewählt ist.

Kinematische Viskosität des Fluids

Die kinematische Viskosität beeinflusst das Strömungsprofil des Fluids. Der Wert geht mit in die Profilkorrektur ein.

- Geben Sie die kinematische Viskosität des Fluids ein.
- Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn Anderes Fluid ausgewählt ist.

Fluiddichte

Mit Hilfe der Dichte wird der Massenstrom berechnet.

Wenn der Massenstrom nicht gemessen wird, ist keine Eingabe erforderlich. Es kann der voreingestellte Wert verwendet werden.

- Geben Sie die Betriebsdichte des Fluids ein.
- Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn Anderes Fluid ausgewählt ist.

Fluidtemperatur

Die Fluidtemperatur wird verwendet:
- zu Beginn der Messung zur Interpolation der Schallgeschwindigkeit und damit zur Berechnung des empfohlenen Sensorabstands
- während der Messung zur Interpolation der Dichte und Viskosität des Fluids

Dieser Wert wird nur verwendet, wenn die Fluidtemperatur nicht gemessen wird. Der Wert muss innerhalb der spezifizierten Umgebungstemperatur der Sensoren liegen.

- Geben Sie die Fluidtemperatur ein. Bei einem Temperaturbereich geben Sie die mittlere Fluidtemperatur ein.

Hinweis!

Bei einem nichtlinearen Zusammenhang von Schallgeschwindigkeit und Temperatur siehe Schallgeschwindigkeits-Temperatur-Kurve.

- Drücken Sie ENTER.
Parametrierung eines Stoffgemischs mit veränderlicher Zusammensetzung
Wenn ein Stoffgemisch mit veränderlicher Zusammensetzung ausgewählt wurde, muss der variable Anteil des Stoffgemischs eingegeben werden (siehe Anhang C.3.2).
• Geben Sie den veränderlichen Anteil des Stoffgemischs ein.
• Drücken Sie ENTER.

9.1.4 Andere Parameter
Verlängerungskabel
Wenn das Sensorkabel verlängert wird (z.B. zwischen Klemmengehäuse und Messumformer), geben Sie die Länge des Verlängerungskabels ein.
• Wählen Sie im Programmzweig Parameter den Menüpunkt Verlängerungskabel.
• Geben Sie die Länge des Verlängerungskabels ein.
• Drücken Sie ENTER.

9.2 Messeinstellungen
• Wählen Sie den Programmzweig Optionen.
• Drücken Sie ENTER.

9.2.1 Auswahl der Messgröße
Es wird eine Liste der verfügbaren Messgrößen angezeigt.
• Wählen Sie die Messgröße.
• Drücken Sie ENTER.

9.2.2 Auswahl der Maßeinheit
Für die gewählte Messgröße (außer Schallgeschwindigkeit) wird eine Liste der verfügbaren Maßeinheiten angezeigt.
• Wählen Sie die Maßeinheit der Messgröße.
• Drücken Sie ENTER.

Hinweis!
Wenn die Messgröße oder die Maßeinheit geändert wird, müssen die Einstellungen für die Ausgänge geprüft werden.
9.2.3 Eingeben der Dämpfungszahl

Jeder angezeigte Messwert ist ein Mittelwert über die letzten x Sekunden, wobei x die Dämpfungszahl ist. Wenn als Dämpfungszahl 0 s eingegeben wird, wird kein Mittelwert gebildet. Der Wert 10 s ist für normale Durchflussbedingungen geeignet. Bei stark schwankenden Werten, verursacht durch eine größere Dynamik der Strömung, kann eine höhere Dämpfungszahl sinnvoll sein.

- Geben Sie die Dämpfungszahl ein.
- Drücken Sie ENTER.

Wenn im Menüpunkt Sonderfunktionen \ Messung \ Messmodi \ Synch. Mehrkanalmess. die synchrone Mehrkanalmessung aktiviert ist, erscheint diese Anzeige nicht für Kanal ABCD. Die Dämpfungszahl wird auf 0 s gesetzt.

9.2.4 Dynamische Dämpfung

Wenn die dynamische Dämpfung aktiviert ist, werden sprunghafte Messwertänderungen der ausgewählten Messgröße verzögerungsfrei durch den Messumformer übertragen.

Wichtig!

Die dynamische Dämpfung wirkt sich nur auf die ausgewählte Messgröße aus. Alle anderen Messgrößen werden nicht dynamisch gedämpft.

- Wählen Sie Ein, um die dynamische Dämpfung für den ausgewählten Messkanal zu aktivieren.
- Drücken Sie ENTER.

Diese Anzeige erscheint nur, wenn die dynamische Dämpfung im Menüpunkt Sonderfunktionen \ Messung \ Messeinstellungen \ Dyn. Dämpfung aktiviert ist.

Optionen \ Dyn. Dämpfung\Dynamicische Schwelle

- Geben Sie für den Messkanal den Wert der dynamischen Schwelle ein. Wenn 0 (Null) eingegeben wird, ist die dynamische Dämpfung deaktiviert.
- Drücken Sie ENTER.

Optionen \ Dyn. Dämpfung \ Transiente Dämpfung

- Geben Sie die Dämpfungszahl für die vorübergehende Dämpfung ein.
- Drücken Sie ENTER.

Hinweis!

Wenn eine andere Messgröße ausgewählt wird, muss die dynamische Dämpfung neu eingegeben werden.

Wenn im Menüpunkt Sonderfunktionen \ Messung \ Messmodi \ Synch. Mehrkanalmess. die synchrone Mehrkanalmessung aktiviert ist, erscheint diese Anzeige nicht für Kanal ABCD. Die dynamische Dämpfung wird deaktiviert.
9.2.5 Eingeben der Fehlerverzögerung

Die Fehlerverzögerung ist das Zeitintervall, nach dessen Ablauf der für die Fehlerausgabe eingegebene Wert zum Ausgang übertragen wird.

Diese Anzeige erscheint nur, wenn im Menüpunkt Sonderfunktionen\Dialoge/Menüs\Fehlerverzögerung der Listeneintrag Editieren ausgewählt wurde.

Wenn die Fehlerverzögerung nicht eingegeben wird, wird die Dämpfungszahl verwendet.

• Geben Sie einen Wert für die Fehlerverzögerung ein.
• Drücken Sie ENTER.
• Halten Sie Taste → gedrückt, um zum Hauptmenü zurückzukehren.

9.2.6 Konfigurieren eines Ausgangs

Wenn der Stromausgang konform zu NAMUR NE43 betrieben werden soll, muss diese Funktion freigegeben werden.

Sonderfunktionen\Stromausgang\NAMUR NE43

• Wählen Sie im Menüpunkt Sonderfunktionen den Listeneintrag Stromausgang.
• Drücken Sie ENTER, bis der Menüpunkt NAMUR NE43 angezeigt wird.
• Wählen Sie Ja, um NAMUR NE43 freizugeben.
• Drücken Sie ENTER.

Wenn der Messumformer mit Ausgängen ausgestattet ist, müssen sie konfiguriert werden. Über die einzelnen Ausgänge kann der Messwert, der Statuswert oder ein Ereigniswert ausgegeben werden.

Im Folgenden wird die Konfiguration eines Analogausgangs beschrieben.

• Wählen Sie den Programmzweig Optionen.
• Drücken Sie ENTER.

Auswahl des Messkanals

Optionen\Kanal Y

• Wählen Sie den Kanal (hier: Kanal Y).
• Drücken Sie ENTER.

Zuordnen eines Ausgangs

• Wählen Sie den Menüpunkt Ausgänge.
• Drücken Sie ENTER.

Optionen\Kanal x\Ausgänge\Strom I1(--)
• Wählen Sie Ja, um die Einstellungen für einen bereits zugeordneten Ausgang zu ändern oder um einen Ausgang neu zuzuordnen.
• Wählen Sie Nein, um die Zuordnung zu löschen und zum vorherigen Menüpunkt zurückzukehren.
• Drücken Sie ENTER.

Zuordnen einer Quellgröße

Jedem ausgewählten Ausgang muss eine Quellgröße zugeordnet werden.

• Wählen Sie die Quellgröße, deren Messwert, Statuswert oder Ereigniswert zum Ausgang übertragen werden soll.
• Drücken Sie ENTER.

Tab. 9.1: Konfigurieren der Ausgänge

<table>
<thead>
<tr>
<th>Quellgröße</th>
<th>Listeneintrag</th>
<th>Ausgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchflussgrößen</td>
<td>Strömungsgeschw.</td>
<td>Strömungsgeschwindigkeit</td>
</tr>
<tr>
<td></td>
<td>Volumenstrom</td>
<td>Volumenstrom</td>
</tr>
<tr>
<td></td>
<td>Massenstrom</td>
<td>Massenstrom</td>
</tr>
<tr>
<td></td>
<td>Wärmestrom</td>
<td>Wärmestrom</td>
</tr>
<tr>
<td>Mengenzähler</td>
<td>Volumen (+)</td>
<td>Mengenzähler für den Volumenstrom in positiver Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Volumen (-)</td>
<td>Mengenzähler für den Volumenstrom in negativer Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Volumen (Δ)</td>
<td>Differenz der Mengenzähler für die positive und negative Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Masse (+)</td>
<td>Mengenzähler für den Massenstrom in positiver Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Masse (-)</td>
<td>Mengenzähler für den Massenstrom in negativer Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Masse (Δ)</td>
<td>Differenz der Mengenzähler für die positive und negative Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Wärmemenge (+)</td>
<td>Wärmemengenzähler für positive Messwerte des Wärmestroms</td>
</tr>
<tr>
<td></td>
<td>Wärmemenge (-)</td>
<td>Wärmemengenzähler für negative Messwerte des Wärmestroms</td>
</tr>
<tr>
<td></td>
<td>Wärmemenge (Δ)</td>
<td>Differenz der Wärmemengenzähler</td>
</tr>
<tr>
<td>Impuls</td>
<td>Impuls</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Impuls +V</td>
<td>Impuls für positive Messwerte des Volumenstroms</td>
</tr>
<tr>
<td></td>
<td>Impuls -V</td>
<td>Impuls für negative Messwerte des Volumenstroms</td>
</tr>
<tr>
<td></td>
<td>Impuls</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Impuls +m</td>
<td>Impuls für positive Messwerte des Massenstroms</td>
</tr>
<tr>
<td></td>
<td>Impuls -m</td>
<td>Impuls für negative Messwerte des Massenstroms</td>
</tr>
<tr>
<td></td>
<td>Impuls</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Impuls +E</td>
<td>Impuls für positive Messwerte des Wärmestroms</td>
</tr>
<tr>
<td></td>
<td>Impuls -E</td>
<td>Impuls für negative Messwerte des Wärmestroms</td>
</tr>
</tbody>
</table>
9 Messung
9.2 Messeinstellungen

Je nach gewählter Quellgröße können Messwerte, Statuswerte oder Ereigniswerte ausgegeben werden.

<table>
<thead>
<tr>
<th>Quellgröße</th>
<th>Listeneintrag</th>
<th>Ausgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidigenschaften</td>
<td>Fluidtemp.</td>
<td>Fluidtemperatur</td>
</tr>
<tr>
<td></td>
<td>Vorlaufstemperatur</td>
<td>Vorlaufstemperatur (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Rücklaufstemperatur</td>
<td>Rücklaufstemperatur (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Temperatur (Δ)</td>
<td>Differenz Vorlauf-/Rücklaufstemperatur (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Fluiddruck</td>
<td>Fluiddruck</td>
</tr>
<tr>
<td></td>
<td>Vorlaufdruck</td>
<td>Vorlaufdruck (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Rücklaufdruck</td>
<td>Rücklaufdruck (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Druck (Δ)</td>
<td>Differenz Vorlauf-/Rücklaufdruck (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Fluidichte</td>
<td>Fluidichte</td>
</tr>
<tr>
<td></td>
<td>Kin. Viskosität</td>
<td>kinematische Viskosität</td>
</tr>
<tr>
<td></td>
<td>Dyn. Viskosität</td>
<td>dynamische Viskosität</td>
</tr>
<tr>
<td>Ereignistrigger</td>
<td>R1</td>
<td>Grenzwertmeldung (Ereignistrigger R1)</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>Grenzwertmeldung (Ereignistrigger R2)</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>Grenzwertmeldung (Ereignistrigger R3)</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>Grenzwertmeldung (Ereignistrigger R4)</td>
</tr>
<tr>
<td>Diagnosewerte</td>
<td>Amplitude</td>
<td>Signalamplitude</td>
</tr>
<tr>
<td></td>
<td>Qualität</td>
<td>Signalqualität</td>
</tr>
<tr>
<td></td>
<td>SNR</td>
<td>Verhältnis Nutzsignal/Störsignal</td>
</tr>
<tr>
<td></td>
<td>SCNR</td>
<td>Verhältnis Nutzsignal/korreliertes Störsignal</td>
</tr>
<tr>
<td></td>
<td>VariAmp</td>
<td>Amplitudenschwankung</td>
</tr>
<tr>
<td></td>
<td>VariTime</td>
<td>Laufzeitschwankung</td>
</tr>
<tr>
<td></td>
<td>Verstärkung</td>
<td>Signalverstärkung, die notwendig ist, um ein verwendbares Signal zu empfangen</td>
</tr>
<tr>
<td></td>
<td>Molch-Erkennung</td>
<td>signalisiert, ob ein Molch erkannt wurde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diese Anzeige erscheint nur, wenn Molch-Erkennung aktiviert ist.</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Ben.-def. Eing. 1</td>
<td>Messwerte von Eingangssignalen (z.B. Temperatur, Druck), die nicht verrechnet werden</td>
</tr>
<tr>
<td></td>
<td>Ben.-def. Eing. 2</td>
<td>Im Menüpunkt Optionen\Eingänge zuordnen können benutzerdefinierten Eingängen konfigurierte Eingänge zugeordnet werden.</td>
</tr>
<tr>
<td></td>
<td>Ben.-def. Eing. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ben.-def. Eing. 4</td>
<td></td>
</tr>
<tr>
<td>Schalldichtigkeit</td>
<td>Schalldichtigkeit</td>
<td>Schalldichtigkeit</td>
</tr>
<tr>
<td></td>
<td>Schalldicht. (Δ)</td>
<td>Differenz der gemessenen Schalldichtigkeit und der aus den Fluiddaten berechneten Schalldichtigkeit</td>
</tr>
</tbody>
</table>

Tab. 9.1: Konfigurieren der Ausgänge
9.2.6.1 Ausgeben eines Messwerts

- Wählen Sie den Listeneintrag Optionen\Kanal x\Ausgänge\...\Werte.
- Drücken Sie ENTER.

Ausgabebereich

- Wählen Sie einen Listeneintrag aus.
 - 4...20 mA
 - Anderer Bereich
- Drücken Sie ENTER.

Wenn Anderer Bereich ausgewählt wird, geben Sie die Werte Ausgabe MIN und Ausgabe MAX ein.

Fehlerausgabe

- Wählen Sie den Listeneintrag Optionen\Kanal x\Ausgänge\...\Fehlerwert
- Drücken Sie ENTER.

Ein Fehlerwert wird festgelegt, der ausgegeben wird, wenn die Quellgröße nicht gemessen werden kann.
- Wählen Sie einen Listeneintrag für die Fehlerausgabe.
- Drücken Sie ENTER.

Wenn Anderer Wert ausgewählt ist, muss ein Fehlerwert eingegeben werden. Der Wert muss außerhalb des Ausgabebereichs liegen. Wenn der eingegebene Wert ungültig ist, werden eine Fehlermeldung und der zulässige Bereich angezeigt.
- Drücken Sie ENTER.
Beispiel

Quellgröße:	Volumenstrom
Ausgang:	Stromausgang
Ausgabebereich:	4...20 mA
Fehlerverzögerung:	$t_d > 0$

Der Volumenstrom kann während des Zeitintervalls $t_0...t_1$ nicht gemessen werden. Der Fehlerwert wird ausgegeben.

Tab. 9.3: Beispiele für die Fehlerausgabe (für Ausgabebereich 4…20 mA)

<table>
<thead>
<tr>
<th>Listeneintrag</th>
<th>Ausgangssignal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 mA</td>
<td></td>
</tr>
<tr>
<td>Letzter Wert</td>
<td></td>
</tr>
<tr>
<td>20.0 mA</td>
<td></td>
</tr>
<tr>
<td>Anderer Wert</td>
<td></td>
</tr>
</tbody>
</table>

Fehlerwert = 3.5 mA
Messbereich
Das Vorzeichen des Messwerts und der Messbereich werden festgelegt.

- Wählen Sie **Vorzeichen**, wenn das Vorzeichen der Messwerte für die Ausgabe berücksichtigt werden soll.
- Wählen Sie **Absolutwert**, wenn das Vorzeichen der Messwerte für die Ausgabe nicht berücksichtigt werden soll.

Anfang Messbereich
• Geben Sie den kleinsten zu erwartenden Messwert an. Die Maßeinheit der Quellgröße wird angezeigt.

Ende Messbereich
• Geben Sie den größten zu erwartenden Messwert an. Die Maßeinheit der Quellgröße wird angezeigt.

Klemmenbelegung
Die Klemmen für den Anschluss des Ausgangs werden angezeigt.

Funktionstest des Ausgangs
Die Funktion des Ausgangs kann nun überprüft werden.

Testwert eingeb.
• Geben Sie einen Testwert ein. Er muss innerhalb des Ausgabebereichs liegen.
• Drücken Sie ENTER.

Messb. testen
• Wählen Sie **Ja**, um die Zuordnung des Messwerts zum Ausgangssignal zu testen. Wählen Sie **Nein**, um den nächsten Menüpunkt anzuzeigen.
• Drücken Sie ENTER.
9 Messung
9.2 Messeinstellungen

• Wählen Sie in der Auswahliste **Aktiv** oder **Passiv**.
• Drücken Sie ENTER.
Wenn das externe Messgerät den Wert (min. Ausgabewert für **Passiv**, max. Ausgabewert für **Aktiv**) anzeigt, funktioniert der Ausgang.
• Wählen Sie **Wiederholen**, um den Test zu wiederholen. Wählen Sie **Beenden**, um den nächsten Menüpunkt anzuzeigen.
• Drücken Sie ENTER.

9.2.6.2 Ausgeben eines Statuswerts/Ereigniswerts

• Wählen Sie den Listeneintrag **Optionen\Kanal x\Ausgänge\...\Status**.
• Drücken Sie ENTER.

Ausgabebereich

• Wählen Sie den Listeneintrag aus.
 - 4...20 mA
 - Anderer Bereich
• Drücken Sie ENTER.
Wenn **Anderer Bereich** ausgewählt wird, geben Sie die Werte **Ausgabe MIN** und **Ausgabe MAX** ein.

Der Ausgabebereich muss > 10 % des max. Ausgabewerts (Ausgabe MAX) betragen. Wenn der Ausgabebereich kleiner ist, wird eine Fehlermeldung angezeigt. Der nächstmögliche Wert wird angezeigt.

<table>
<thead>
<tr>
<th>Statuswert – Status OK</th>
<th>Ereigniswert – Ruhezustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Status des Ausgangssignals, der ausgegeben werden soll, wenn ein Messwert gemessen wird, wird festgelegt.</td>
<td>Der Status des Ausgangssignals, der ausgegeben werden soll, wenn kein Ereignis eintritt, wird festgelegt.</td>
</tr>
<tr>
<td>• Wählen Sie in der Auswahliste den Wert für Status OK. • Drücken Sie ENTER.</td>
<td>• Wählen Sie den Wert für den Ruhezustand. • Drücken Sie ENTER.</td>
</tr>
</tbody>
</table>

Klemmenbelegung

• Wählen Sie **Optionen\Kanal x\Ausgänge\...\Info Ausgang**.

Die Klemmen für den Anschluss des Ausgangs werden angezeigt.
• Drücken Sie ENTER.
Funktionstest des Ausgangs

Die Funktion des Ausgangs kann nun überprüft werden.

- Schließen Sie ein externes Messgerät an die Klemmen des installierten Ausgangs an.

| Optionen | Kanal x \ Ausgänge \ ...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal testen</td>
<td></td>
</tr>
</tbody>
</table>

- Wählen Sie **Ja**, um den Ausgang zu testen. Wählen Sie **Nein**, um den nächsten Menüpunkt anzuzeigen.
- Drücken Sie **ENTER**.

| Optionen | Kanal x \ Ausgänge \ ...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Testwert eingeb.</td>
<td></td>
</tr>
</tbody>
</table>

- Geben Sie einen Testwert ein. Er muss innerhalb des Ausgabebereichs liegen.
- Drücken Sie **ENTER**.

Wenn das externe Messgerät den eingegebenen Wert anzeigt, funktioniert der Ausgang.

- Wählen Sie **Wiederholen**, um den Test zu wiederholen, **Beenden**, um den nächsten Menüpunkt anzuzeigen.
- Drücken Sie **ENTER**.

| Optionen | Kanal x \ Ausgänge \ ...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Messb. testen</td>
<td></td>
</tr>
</tbody>
</table>

- Wählen Sie **Ja**, um den Status des Ausgangssignals zu testen. Wählen Sie **Nein**, um den nächsten Menüpunkt anzuzeigen.
- Drücken Sie **ENTER**.

| Optionen | Kanal x \ Ausgänge \ ...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Testwert eingeb.</td>
<td></td>
</tr>
</tbody>
</table>

- Wählen Sie einen Listeneintrag als Testwert.
- Drücken Sie **ENTER**.

<table>
<thead>
<tr>
<th>Statuswert</th>
<th>Ereigniswert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status OK oder Status Fehler</td>
<td>Aktiv oder Passiv</td>
</tr>
</tbody>
</table>

Wenn das externe Messgerät den Wert (min. Ausgabewert für **Status Fehler**, max. Ausgabewert für **Status OK**) anzeigt, funktioniert der Ausgang.

- Drücken Sie **ENTER**.
- Halten Sie Taste [далее] gedrückt, um zum Hauptmenü zurückzukehren.
9.2.6.3 Schaltbare Stromausgänge

Wenn der Messumformer schaltbare Stromausgänge hat, muss festgelegt werden, wie diese geschaltet werden sollen.

- Wählen Sie im Programmzweig **Sonderfunktionen** den Menüpunkt **Stromausgang**.
- Drücken Sie ENTER.

- Wählen Sie **Aktiv**, wenn die Stromausgänge aktiv geschaltet werden sollen.
- Drücken Sie ENTER. Alle schaltbaren Stromausgänge werden auf aktiv geschaltet.
- Wählen Sie **Passiv**, wenn die Stromausgänge passiv geschaltet werden sollen.
- Drücken Sie ENTER. Alle schaltbaren Stromausgänge werden auf passiv geschaltet.

9.3 Starten der Messung

- Wählen Sie den Programmzweig **Messung**.
- Drücken Sie ENTER.

Aktivieren der Kanäle

Die Kanäle für die Messung können aktiviert und deaktiviert werden.

- der Kanal ist aktiviert
- der Kanal ist deaktiviert
- der Kanal kann nicht aktiviert werden

Diese Anzeige erscheint nicht, wenn der Messumformer nur einen Messkanal hat.
- Wählen Sie einen Kanal mit der Taste ▼ oder ▲.

Hinweis!

Gehen Sie den Programmzweig **Parameter** einmal vollständig durch, wenn für alle Kanäle □ angezeigt wird.

- Drücken Sie Taste ▼ oder ▲, um den Kanal zu aktivieren oder deaktivieren.
- Wenn die Parameter im Programmzweig **Parameter** nicht gültig oder nicht vollständig sind, wird die Fehlermeldung Parameter ungültig angezeigt.

Ein deaktivierter Kanal wird während der Messung ignoriert.
- Beim Starten einer Messung werden die Messstellennummer und die Anzahl der Schallwege einmalig abgefragt. Alle weiteren Parameter werden danach einzeln pro Messkanal abgefragt.
Eingeben der Messstellennummer

• Geben Sie die Nummer der Messstelle ein.
• Drücken Sie ENTER.

Für das Aktivieren der Eingabe von Text siehe Sonderfunktionen\Dialoge\Menüs\Messstellennummer.

Kalibrierung der Temperaturberechnung aus der Schallgeschwindigkeit

Mit dem Messumformer kann während der Messung die Temperatur aus der Schallgeschwindigkeit des Fluids berechnet werden. Die Genauigkeit der gemessenen Schallgeschwindigkeit des Fluids ist von der Genauigkeit der eingegebenen Parameter bzw. der Montage der Sensoren abhängig.

Wenn die Temperatur während der Messung aus der Schallgeschwindigkeit des Fluids berechnet werden soll, erfolgt beim Starten der Messung eine Kalibrierung auf Grundlage der tatsächlichen Fluidtemperatur. Diese muss gemessen und im Messumformer eingeben werden. Im Messumformer wird ein Offset aus der Differenz zwischen der eingegebenen Fluidtemperatur und der aus der Schallgeschwindigkeit berechneten Fluidtemperatur bestimmt und gespeichert.

Wird zum ersten Mal auf einem Messkanal eine Messung mit aktiver Berechnung der Fluidtemperatur aus der Schallgeschwindigkeit des Fluids gestartet, hat der Messumformer noch keinen Offset gespeichert. Die Fluidtemperatur muss eingegeben werden.

• Geben Sie die gemessene Fluidtemperatur ein.
• Drücken Sie ENTER.

Diese Anzeige erscheint nur, wenn die Berechnung des Temperatur-Offsets im Menüpunkt Optionen\Spez. Einstellungen\Fluid: c -> T freigegeben ist.

Hinweis!

Die Bestimmung des Offsets kann nach dem Starten der Messung bis zu 2 Minuten dauern (es werden 100 Schallgeschwindigkeitsmessungen gemittelt).

Wenn auf einem Messkanal aus vorheriger Messung ein Offset für die Temperaturberechnung im Messumformer gespeichert ist, wird beim Starten der Messung gefragt, ob eine Kalibrierung durchgeführt werden soll. Der aktuell gespeicherte Offset wird angezeigt (hier: 2.7 K).

• Wählen Sie Kalibrierung beibehalten, wenn der aktuell gespeicherte Offset verwendet werden soll.
• Drücken Sie ENTER.
• Wählen Sie Neue Kalibrierung, wenn der Offset neu bestimmt werden soll.
• Drücken Sie ENTER.

• Geben Sie die gemessene Fluidtemperatur ein.
• Drücken Sie ENTER.

Diese Anzeige erscheint nur, wenn Neue Kalibrierung ausgewählt ist.

Eingeben der Anzahl der Schallwege

• Geben Sie die Anzahl der Schallwege ein.
• Drücken Sie ENTER.
Einstellen des Sensorabstands

Messung\Sensorabstand

Hinweis!

Die Genauigkeit des empfohlenen Sensorabstands hängt von der Genauigkeit der eingegebenen Rohr- und Fluidparameter ab.

- Befestigen Sie die Sensoren am Rohr und stellen Sie den empfohlenen Sensorabstand ein.
- Drücken Sie ENTER.

Das Diagnosefenster wird angezeigt.
Das Balkendiagramm AMP zeigt die Amplitude des empfangenen Signals.
Das Balkendiagramm SCNR zeigt das Verhältnis Nutzsignal/korreliertes Störsignal.

Abb. 9.1: Diagnosefenster

Tab. 9.4: Diagnosewerte

<table>
<thead>
<tr>
<th>Zeile 1 der Anzeige, Scrollen mit Taste</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>c, G</td>
<td>gemessene Schallgeschwindigkeit des Fluids und Signalverstärkung</td>
</tr>
<tr>
<td>SCNR</td>
<td>Verhältnis Nutzsignal/korreliertes Störsignal</td>
</tr>
<tr>
<td>SNR</td>
<td>Verhältnis Nutzsignal/Störsignal</td>
</tr>
<tr>
<td>Q</td>
<td>Signalqualität</td>
</tr>
<tr>
<td></td>
<td>Mit Taste wird statt des Balkendiagramms der Zahlenwert angezeigt.</td>
</tr>
<tr>
<td>GAIN</td>
<td>Signalverstärkung</td>
</tr>
<tr>
<td></td>
<td>Wenn der aktuelle Wert der Signalverstärkung höher ist als die max. Signalverstärkung, wird nach dem aktuellen Wert (\rightarrow \text{FAIL!}) angezeigt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeile 2 der Anzeige, Scrollen mit Taste</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>empfohlener Sensorabstand</td>
</tr>
<tr>
<td>SCNR</td>
<td>Verhältnis Nutzsignal/korreliertes Störsignal</td>
</tr>
<tr>
<td>SNR</td>
<td>Verhältnis Nutzsignal/Störsignal</td>
</tr>
<tr>
<td>Q</td>
<td>Signalqualität</td>
</tr>
<tr>
<td></td>
<td>Mit Taste wird statt des Balkendiagramms der Zahlenwert angezeigt.</td>
</tr>
</tbody>
</table>

(1) Um Dopplungen zu vermeiden, wird ein in einer Zeile bereits angezeigter Wert in der jeweils anderen Zeile ausgeblendet.

- Prüfen Sie bei größeren Abweichungen der Diagnosewerte von den empfohlenen Diagnosegrenzwerten, ob die Parameter korrekt eingegeben wurden, oder wiederholen Sie die Messung an einer anderen Stelle des Rohrs.
- Drücken Sie ENTER.
Eingeben des Sensorabstands

Der empfohlene Sensorabstand wird aus der gemessenen Schallgeschwindigkeit berechnet. Er ist daher eine bessere Näherung als der zuerst vorgeschlagene Wert, der aus der im Programmzweig Parameter eingegebenen Schallgeschwindigkeit berechnet wurde.

- Messen Sie den eingestellten Sensorabstand.
- Geben Sie den gemessenen Sensorabstand ein. Die max. zulässige Differenz zum empfohlenen Sensorabstand darf nicht überschritten werden.
- Drücken Sie ENTER.

Die Messung wird gestartet. Die Messwertanzeige erscheint.

Tab. 9.6: Max. zulässige Abweichung zwischen dem empfohlenen und dem eingegebenen Sensorabstand

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-</td>
<td>60…+120</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>20</td>
<td>45…+90</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-</td>
<td>30…+60</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>20…+40</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>10</td>
<td>10…+20</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>8</td>
<td>5…+10</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>6</td>
<td>3…+5</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

9.4 Anzeigen der Messwerte

Während der Messung werden die Messwerte folgendermaßen angezeigt:

Abb. 9.2: Messwertanzeige

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanal, Programmvueig, Statusanzeigen</td>
<td>Messgröße</td>
<td>Maßeinheit und Messwert</td>
<td>weitere Messgrößen</td>
<td>weitere Messgrößen</td>
</tr>
</tbody>
</table>

1 – Kanal, Programmzweig, Statusanzeigen
2 – Messgröße
3 – Maßeinheit und Messwert
4 – weitere Messgrößen
5 – weitere Messgrößen
Durch Drücken der Taste \(ext{3} \) oder \(ext{5} \) können während der Messung weitere Messgrößen angezeigt werden.

- Drücken Sie Taste \(ext{3} \) zur Anzeige der Messwerte in Zeile 5. Die Bezeichnung der Messgröße wird in der Zeile 4 angezeigt, wenn Taste \(ext{3} \) einige Sekunden lang gedrückt gehalten wird.
- Drücken Sie Taste \(ext{5} \) zur Anzeige der Messwerte in Zeile 4. Die Bezeichnung der Messgröße wird in der Zeile 5 angezeigt, wenn Taste \(ext{5} \) einige Sekunden lang gedrückt gehalten wird.

Umschalten zwischen den Kanälen

Wenn die Messung auf mehreren Kanälen gestartet ist, kann die Messwertanzeige folgendermaßen angepasst werden:

- **AutoMux-Modus**
 Im AutoMux-Modus werden die Messwerte aller aktivierten Kanäle (Mess- und Verrechnungskanäle) nacheinander angezeigt. Nach 3 s wird zum nächsten Kanal geschaltet. Die Umschaltzeit kann im Menüpunkt Sonderfunktionen\Dialoge/Menüs\Umschaltzeit geändert werden.

- **HumanMux-Modus**
 Im HumanMux-Modus werden die Messwerte eines einzelnen Kanals angezeigt. Die Messung auf den anderen Kanälen wird fortgesetzt.
 - Drücken Sie Taste \(ext{7} \), um den nächsten aktivierten Kanal anzuzeigen. Die Messwerte für den ausgewählten Kanal werden angezeigt.
 Jede Messung startet im AutoMux-Modus. Mit Taste \(ext{9} \) wird zwischen den Modi umgeschaltet.

Statuszeile

Wichtige Daten der laufenden Messung sind in der Statuszeile zusammengefasst. Qualität und Präzision der Messung können so beurteilt werden. Durch Drücken der Taste \(ext{3} \) kann während der Messung zur Statuszeile geschaltet werden.

Abb. 9.3: Anzeigen der Statuszeile

<table>
<thead>
<tr>
<th>Wert</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Signalamplitude</td>
</tr>
<tr>
<td>0</td>
<td>< 5 %</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>≥ 90 %</td>
</tr>
<tr>
<td>Q</td>
<td>Signalqualität</td>
</tr>
<tr>
<td>0</td>
<td>< 5 %</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>≥ 90 %</td>
</tr>
<tr>
<td>c</td>
<td>Schallgeschwindigkeit</td>
</tr>
<tr>
<td>√</td>
<td>ok, entspricht dem erwarteten Wert</td>
</tr>
<tr>
<td>↑</td>
<td>> 20 % des erwarteten Werts</td>
</tr>
<tr>
<td>↓</td>
<td>< 20 % des erwarteten Werts</td>
</tr>
<tr>
<td>?</td>
<td>unbekannt, kann nicht gemessen werden</td>
</tr>
</tbody>
</table>

Tab. 9.7: Beschreibung der Statuszeile
9 Messung

9.4 Anzeigen der Messwerte

Sensorabstand
Durch Drücken der Taste \(\text{s} \) kann während der Messung zur Anzeige des Sensorabstands gescrollt werden.

Sensortemperatur
Im Modus \text{SuperUser} und \text{SuperUser erw.} kann während der Messung die Sensortemperatur angezeigt werden.

Tab. 9.7: Beschreibung der Statuszeile

<table>
<thead>
<tr>
<th>Wert</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Strömungsprofil</td>
</tr>
<tr>
<td></td>
<td>Information über das Strömungsprofil, basierend auf der Reynoldszahl</td>
</tr>
<tr>
<td>T</td>
<td>vollständig turbulentes Strömungsprofil</td>
</tr>
<tr>
<td>L</td>
<td>vollständig laminares Strömungsprofil</td>
</tr>
<tr>
<td>†</td>
<td>Übergangsbereich zwischen laminerer und turbulenter Strömung</td>
</tr>
<tr>
<td>?</td>
<td>unbekannt, kann nicht berechnet werden</td>
</tr>
<tr>
<td>F</td>
<td>Strömungsgeschwindigkeit</td>
</tr>
<tr>
<td></td>
<td>Vergleich der gemessenen Strömungsgeschwindigkeit mit den Strömungsgrenzwerten des Systems</td>
</tr>
<tr>
<td>✓</td>
<td>ok, Strömungsgeschwindigkeit liegt nicht im kritischen Bereich</td>
</tr>
<tr>
<td>↑</td>
<td>Strömungsgeschwindigkeit höher als der aktuelle Grenzwert</td>
</tr>
<tr>
<td>↓</td>
<td>Strömungsgeschwindigkeit niedriger als die aktuelle Schleichmenge</td>
</tr>
<tr>
<td>0</td>
<td>Strömungsgeschwindigkeit liegt im Grenzbereich der Messmethode</td>
</tr>
<tr>
<td>?</td>
<td>unbekannt, kann nicht gemessen werden</td>
</tr>
</tbody>
</table>

Hinweis!
Ändern Sie nie den Sensorabstand während der Messung!

Hinweis!
Wenn die Einhaltung der spezifizierten Sensortemperatur überwacht werden soll, kann sie auf einen Ereignistrigger gelegt werden.
9.5 Anzeigen der Parameter

Die Parameter können während der Messung angezeigt werden.

- Drücken Sie während der Messung Taste ↵.

Die folgende Anzeige erscheint:

Abb. 9.6: Auswahlliste im Programmzweig Messung

<table>
<thead>
<tr>
<th>Messung</th>
<th>↵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Param. anzeigen</td>
<td>↵</td>
</tr>
<tr>
<td>Messung anzeigen</td>
<td>↵</td>
</tr>
<tr>
<td>Messung stoppen</td>
<td>↵</td>
</tr>
</tbody>
</table>

1 – Statusanzeige

Die Messung läuft im Hintergrund weiter. Das Symbol 🔄 erscheint in der Statusanzeige.

Messung\Param. anzeigen

- Wählen Sie in der Auswahlliste Param. anzeigen.
- Drücken Sie ENTER.

Der Programmzweig Messung wird angezeigt.

- Wählen Sie einen anderen Programmzweig, um sich die Parameter anzeigen zu lassen.

Hinweis!

Während der Messung können die Parameter nicht geändert werden. Beim Versuch, die Parameter zu ändern, wird die Meldung Lesemodus angezeigt.

Wenn die Parameter geändert werden sollen, muss die Messung gestoppt werden.

Informations zum Messwertspeicher

Während der Messung können Informationen zum Messwertspeicher angezeigt werden.

- Drücken Sie Taste ↵ bis folgende Anzeige erscheint.

Abb. 9.7: Informationen zum Messwertspeicher

<table>
<thead>
<tr>
<th>Messung</th>
<th>↵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumenstrom</td>
<td>3.71</td>
</tr>
<tr>
<td>Lcpr: Sd 3th Sm</td>
<td>Kapazität (Zeit)</td>
</tr>
</tbody>
</table>

Wenn der Ringbuffer deaktiviert ist, wird in Zeile 4 angezeigt, wann der Messwertspeicher voll ist, wenn alle Einstellungen beibehalten werden.

Wenn der Ringbuffer aktiviert ist, wird in Zeile 4 angezeigt, wie lange noch Messdaten gespeichert werden können ohne ältere Messdaten zu überschreiben.

Die Informationen zum Messwertspeicher können auch über die Funktion Param. anzeigen angezeigt werden.

Sonderfunktionen\Messwertspeicher

- Wählen Sie im Menüpunkt Messwertspeicher den Listeneintrag Speicher-Info.
- Drücken Sie ENTER.

Die Informationen zum Messwertspeicher werden angezeigt.
Anzeigen des aktuellen Temperatur-Offsets

Wenn die Berechnung der Fluidtemperatur aus der Schallgeschwindigkeit des Fluids aktiviert ist, kann der Temperatur-Offset während der Messung angezeigt werden.

1. Wählen Sie im Programmzweig **Optionen** den Menüpunkt **Spez. Einstellungen**.
2. Drücken Sie ENTER, bis der Menüpunkt **Fluid: c -> T** angezeigt wird.

Die folgende Anzeige erscheint:

![Optionen\Spez. Einstellungen\Fluid: c -> T](image)

Abb. 9.8: Anzeigen des Temperatur-Offsets

9.6 Erneutes Anzeigen der Messwerte

1. Wählen Sie den Programmzweig **Messung**, um zur Messwertanzeige zurückzukehren.
2. Drücken Sie ENTER.

Die folgende Anzeige erscheint:

![Messung\Messung anzeigen](image)

Abb. 9.9: Auswahlliste im Programmzweig **Messung**

1. Wählen Sie in der Auswahlliste **Messung anzeigen**.
2. Drücken Sie ENTER.

Die Messwertanzeige erscheint.
9.7 Ausführen spezieller Funktionen

Einige Tasten haben spezielle Funktionen. Sie können für das Eingeben von Werten, das Scrollen in Auswahllisten und das Ausführen spezieller Funktionen verwendet werden.

Tab. 9.8: Spezielle Funktionen

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Umschalten zwischen AutoMux-Modus und HumanMux-Modus</td>
</tr>
<tr>
<td></td>
<td>Anzeige des Mengenzählers</td>
</tr>
<tr>
<td></td>
<td>Auslösen von Snaps</td>
</tr>
<tr>
<td></td>
<td>Taste gedrückt halten, um zwischen Wechsel- und Standard-Messwertanzeige umzuschalten (nur bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Umschalten zwischen den Anzeigen der aktivierten Kanäle</td>
</tr>
<tr>
<td></td>
<td>Umschalten zwischen TransitTime-Modus und NoiseTrek-Modus</td>
</tr>
<tr>
<td></td>
<td>Anzeige der Auswahlliste im Programmzweig Messung</td>
</tr>
<tr>
<td>ENTER</td>
<td>Anzeige des Diagnosefensters</td>
</tr>
</tbody>
</table>

Einige Funktionen können im Kontext des Kanals ausgeführt werden, der zuletzt auf dem Display sichtbar war.

• Halten Sie die Taste C gedrückt, bis der Menüpunkt Befehl ausführen erscheint.

Mengenzähler

Messung\Befehl ausführen\Mengenzähler

• Wählen Sie den Listeneintrag Mengenzähler.
• Drücken Sie ENTER.

Die folgende Auswahlliste erscheint:

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mengenz. zurücks.</td>
<td>Mengenzähler auf Null setzen</td>
</tr>
<tr>
<td>Anzeige einrieren</td>
<td>Messwert des Mengenzählers mehrere Sekunden lang anzeigen</td>
</tr>
<tr>
<td>Fehler zurücksetzen</td>
<td>Fehler des Mengenzählers zurücksetzen</td>
</tr>
<tr>
<td>Mengen stopp./löscht.</td>
<td>Mengenzähler stoppen und auf Null setzen</td>
</tr>
<tr>
<td>Mengenz. starten</td>
<td>Mengenzähler starten</td>
</tr>
</tbody>
</table>

Messmodus

Wenn der NoiseTrek- oder der FastFood-Modus freigegeben ist, kann zwischen diesen und dem TransitTime-Modus umgeschaltet werden.

Messung\Befehl ausführen\Messmodus

• Wählen Sie den Listeneintrag Messmodus.
• Drücken Sie ENTER.
• Wählen Sie einen Listeneintrag für den Messmodus.
• Drücken Sie ENTER.
Kanalumschaltung
Wenn die Messung auf mehreren Kanälen gestartet ist, kann die Messwertanzeige folgendermaßen angepasst werden:

- Wählen Sie den Listeneintrag **Kanalumschaltung**.
- Drücken Sie ENTER.

Während der Messung können die Messwerte eines aktivierten Kanals angezeigt werden oder es wird zwischen den aktivierten Kanälen automatisch umgeschaltet.

- Wählen Sie einen Listeneintrag für die Kanalumschaltung.
- Drücken Sie ENTER.

Snap erstellen
Ein Snap wird erstellt.

Diese Anzeige erscheint nur, wenn die Snap-Funktion im Menüpunkt **Sonderfunktionen\Snap\Konfiguration** freigegeben ist.

Ereignistrigger in den Ruhezustand zurücksetzen
Ein Snap wird erstellt.

Diese Anzeige erscheint nur, wenn ein Ereignistrigger parametriert wurde und auch mindestens ein Ereignistrigger ausgelöst hat.

Umschalten zwischen Standard- und Wechsel-Messwertanzeige (nur bei Wärmestrommessung)

- Wählen Sie den Listeneintrag **Anzeige-Umschalt. ein**.
- Drücken Sie ENTER.

- Wählen Sie den Listeneintrag **Anzeige-Umschalt. aus**.
- Drücken Sie ENTER.
9.8 Stoppen der Messung

• Drücken Sie während der Messung Taste [E].

Die folgende Anzeige erscheint:

Abb. 9.10: Auswahliste im Programmzweig Messung

Messung
- Messung
- Param. anzeigen
- Messung anzeigen
- Messung stoppen

• Wählen Sie Messung stoppen.
• Drücken Sie ENTER.

Die Messung wird gestoppt. Der Programmzweig Parameter wird angezeigt.

Nach Trennung von der Spannungsversorgung und erneutem Anschluss erscheint der Programmzweig Parameter.
10 Fehlersuche

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (ATEX, IECEx)
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUS).

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (TR TS)
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUSRU).

Warnung!

Servicearbeiten von nicht autorisiertem und befähigtem Personal
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Arbeiten am Messumformer dürfen nur von autorisiertem und befähigtem Personal durchgeführt werden.

Gefahr!

Arbeiten in Bergwerken oder engen Räumen
Vergiftungs-/Erstickungsgefahr durch austretende Gase, Verletzungsgefahr durch beengte Verhältnisse
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften.

Vorsicht!

Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel
Das Nichtbeachten der Vorschriften kann zu schweren Verletzungen führen.
→ Bei allen Elektroarbeiten müssen die Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel beachtet werden.

Warnung!

Berühren spannungsführender Teile
Elektrischer Schlag oder Störschichtbögen können zu schweren Verletzungen führen. Das Messgerät kann beschädigt werden.
→ Bevor Arbeiten am Messumformer (z.B. Montage, Demontage, Anschluss, Inbetriebnahme) durchgeführt werden, muss der Messumformer von der Spannungsversorgung getrennt werden. Das Entfernen der internen Gerätesicherung ist dafür nicht ausreichend.
Wenn ein Problem ergeben sollte, das mit Hilfe dieser Betriebsanleitung nicht gelöst werden kann, nehmen Sie Kontakt mit unserem Vertrieb auf und beschreiben Sie das Problem so genau wie möglich. Geben Sie den Typ, die Seriennummer sowie die Firmwareversion des Messumformers an.

Die Anzeige funktioniert überhaupt nicht oder fällt immer wieder aus
- Überprüfen Sie die Kontrasteinstellung des Messumformers oder geben Sie den HotCode 555000 ein, um die Anzeige auf mittleren Kontrast zu stellen.
- Stellen Sie sicher, dass die geeignete Spannung an den Klemmen anliegt. Entnehmen Sie dem Typenschild unterhalb der äußeren rechten Klemmenleiste, für welche Spannungsversorgung der Messumformer vorgesehen ist.
- Wenn die Spannungsversorgung in Ordnung ist, sind entweder die Sensoren oder ein Bauteil des Messumformers defekt. Sensoren und Messumformer müssen zur Reparatur an FLEXIM eingeschickt werden.
- Wenn der Messumformer nur über die USB-Schnittstelle angeschlossen ist, wird die Hintergrundbeleuchtung ausgeschaltet.

Ein Fehler wird in der Statusanzeige angezeigt (Symbol 🚸)
- Drücken Sie Taste [➡️], um zum Hauptmenü zurückzukehren.
- Wählen Sie den Menüpunkt "Sonderfunktionen\Systemeinstellungen\Ereignisprotokoll."
- Drücken Sie ENTER. Die Liste der Fehlermeldungen wird angezeigt.

Das Datum und die Uhrzeit sind falsch, die Messwerte werden beim Ausschalten gelöscht
- Wenn nach dem Aus- und Wiedereinschalten das Datum und die Uhrzeit zurückgesetzt bzw. falsch sind oder die Messwerte gelöscht werden, muss die Datenspeicherungsbatterie ersetzt werden.

Ein Ausgang funktioniert nicht
- Stellen Sie sicher, dass die Ausgänge richtig konfiguriert sind. Überprüfen Sie die Funktion des Ausgangs. Wenn der Ausgang defekt ist, nehmen Sie Kontakt mit FLEXIM auf.

10.1 Probleme mit der Messung

- Stellen Sie fest, ob die eingegebenen Parameter korrekt sind, insbesondere der Rohraußendurchmesser, die Rohrwanddicke und die Schallgeschwindigkeit des Fluids. Typische Fehler: Der Umfang oder Radius wurde statt des Durchmessers eingegeben, der Innendurchmesser wurde statt des Außendurchmessers eingegeben.
- Prüfen Sie die Anzahl der Schallwege.
- Stellen Sie sicher, dass der empfohlene Sensorabstand bei der Montage der Sensoren eingestellt wurde.
- Stellen Sie sicher, dass eine geeignete Messstelle ausgewählt und die Anzahl der Schallwege korrekt eingegeben sind.
- Versuchen Sie, einen besseren akustischen Kontakt zwischen dem Rohr und den Sensoren herzustellen.
- Geben Sie eine kleinere Anzahl der Schallwege ein. Möglicherweise ist die Signalämpfung aufgrund einer hohen Viskosität des Fluids oder aufgrund von Ablagerungen an der Rohrinnenwand zu hoch.

Das Messsignal wird empfangen, aber keine Messwerte werden erhalten
- Wenn der festgelegte obere Grenzwert der Strömungsgeschwindigkeit überschritten bzw. der untere Grenzwert unterschritten wird, wird UNDEF und hinter der Messgröße ein Ausrufezeichen angezeigt. Die Messwerte werden als ungültig markiert. Der Grenzwert muss den Messbedingungen angepasst werden.
- Wenn kein Ausrufezeichen angezeigt wird, ist eine Messung an der ausgewählten Messstelle nicht möglich.
Signalverlust während der Messung
- Wenn das Rohr leergelaufen war und nach der Wiederbefüllung kein Messsignal mehr erhalten wird, nehmen Sie Kontakt mit FLEXIM auf.

Die Messwerte weichen erheblich von den erwarteten Werten ab
- Falsche Messwerte sind oft durch falsche Parameter verursacht. Stellen Sie sicher, dass die eingegebenen Parameter für die Messstelle korrekt sind.

10.2 Auswahl der Messstelle
- Stellen Sie sicher, dass der empfohlene Mindestabstand zu allen Störstellen eingehalten wird.
- Vermeiden Sie Messstellen, an denen sich Ablagerungen im Rohr bilden.
- Vermeiden Sie Messstellen in der Nähe deformierter oder beschädigter Stellen am Rohr sowie in der Nähe von Schweißnähten.
- Achten Sie darauf, dass die Rohroberfläche an der Messstelle eben ist.
- Messen Sie die Temperatur an der Messstelle und stellen Sie sicher, dass die Sensoren für diese Temperatur geeignet sind.
- Stellen Sie sicher, dass der Rohraußendurchmesser im Messbereich der Sensoren liegt.
- Bei der Messung an einem horizontalen Rohr sollten die Sensoren seitlich am Rohr befestigt werden.
- Ein senkrecht montiertes Rohr muss an der Messstelle immer gefüllt sein. Das Fluid sollte aufwärts fließen.
- Es sollten sich keine Gasblasen bilden (selbst blasenfreie Fluide können Gasblasen bilden, wenn sich das Fluid entspannt, z.B. vor Pumpen und hinter großen Querschnittserweiterungen).

10.3 Maximaler akustischer Kontakt
- siehe Abschnitt 6.2

10.4 Anwendungsspezifische Probleme
Ein Fluid mit einer falschen Schallgeschwindigkeit wurde gewählt
- Wenn die ausgewählte Schallgeschwindigkeit im Fluid nicht mit der tatsächlichen übereinstimmt, kann der Sensorabstand möglicherweise nicht korrekt bestimmt werden.
- Die Schallgeschwindigkeit des Fluids wird verwendet, um den Sensorabstand zu berechnen, und ist deshalb für die Sensorpositionierung sehr wichtig. Die im Messumformer gespeicherten Schallgeschwindigkeiten dienen nur als Orientierungswerte.

Die eingegebene Rohrrauigkeit ist nicht geeignet
- Überprüfen Sie den eingegebenen Wert. Der Rohrzustand sollte dabei berücksichtigt werden.

Die Messung an Rohren aus porösen Materialien (z.B. Beton oder Gusseisen) ist nur bedingt möglich
- Nehmen Sie Kontakt mit FLEXIM auf.

Die Rohrauskleidung kann bei der Messung Probleme verursachen, wenn sie nicht fest an der Rohrinnenwand anlegt oder aus akustisch absorbierendem Material besteht
- Versuchen Sie, an einem nicht ausgekleideten Abschnitt des Rohrs zu messen.

Hochviskose Fluide dämpfen das Ultraschallsignal stark
- Die Messung von Fluiden mit einer Viskosität > 1000 mm²/s ist nur bedingt möglich.

Gase oder Feststoffe in hoher Konzentration im Fluid streuen und absorbieren das Ultraschallsignal und dämpfen dadurch das Messsignal
- Bei einem Wert von ≥ 10 % ist eine Messung nicht möglich. Bei einem hohen Anteil, der aber < 10 % ist, ist die Messung nur bedingt möglich.
10.5 Große Abweichungen der Messwerte

Ein Fluid mit einer falschen Schallgeschwindigkeit wurde gewählt

• Wenn ein Fluid ausgewählt wird, dessen Schallgeschwindigkeit nicht mit der tatsächlichen übereinstimmt, kann es vorkommen, dass das Messsignal mit einem Rohrwandsignal verwechselt wird. Der aus diesem falschen Signal vom Messumformer errechnete Durchflusswert ist sehr klein oder schwankt um 0 (Null).

Es ist Gas im Rohr

• Wenn Gas im Rohr ist, ist der gemessene Durchfluss zu hoch, da neben dem Flüssigkeitsvolumen auch das Gasvolumen gemessen wird.

Der eingegebene obere Grenzwert der Strömungsgeschwindigkeit ist zu niedrig

• Alle Messwerte für die Strömungsgeschwindigkeit, die den oberen Grenzwert überschreiten, werden ignoriert und als ungültig gekennzeichnet. Alle aus der Strömungsgeschwindigkeit abgeleiteten Größen werden auch ungültig gesetzt. Wenn mehrere korrekte Messwerte auf diese Weise ignoriert werden, ergeben sich zu kleine Werte der Mengenzähler.

Die eingegebene Schleichmenge ist zu hoch

• Alle Strömungsgeschwindigkeiten, die kleiner sind als die Schleichmenge, werden auf 0 (Null) gesetzt. Alle abgeleiteten Größen werden auch auf 0 (Null) gesetzt. Um bei geringen Strömungsgeschwindigkeiten messen zu können, muss die Schleichmenge entsprechend klein eingestellt werden (Voreinstellung: 2.5 cm/s).

Die eingegebene Rohrrauigkeit ist ungeeignet

Die Strömungsgeschwindigkeit des Fluids liegt außerhalb des Messbereichs des Messumformers

Die Messstelle ist ungeeignet

• Wählen Sie eine andere Messstelle, um zu prüfen, ob die Ergebnisse besser sind. Rohre sind nie perfekt rotationssymmetrisch, das Strömungsprofil wird daher beeinflusst.

10.6 Probleme mit den Mengenzählern

Die Werte der Mengenzähler sind zu klein

• Einer der Mengenzähler hat den oberen Grenzwert erreicht und muss manuell auf 0 (Null) zurückgesetzt werden.

Die Summe der Mengenzähler ist nicht korrekt

• Die ausgegebene Summe der beiden Mengenzähler (Durchsatzmenge ΣQ) ist nach dem ersten Überlaufen eines der Mengenzähler nicht mehr gültig.

Hinter dem Wert des Mengenzählers wird ein Fragezeichen angezeigt

• Die Messung war zeitweise nicht möglich, so dass der Wert des Mengenzählers falsch sein kann.

10.7 Probleme bei der Wärmestrommessung

Die gemessenen Werte für die Fluidtemperatur weichen von den tatsächlichen Werten ab

• Die Temperaturfühler sind nicht ausreichend isoliert.
• Bei einem kleinen Rohrdurchmesser wird der Temperaturfühler durch den Isolierschaumstoff von der Rohroberfläche angehoben.

Der gemessene Absolutwert des Wärmestroms ist richtig, hat aber ein umgekehrtes Vorzeichen

• Überprüfen Sie die Zuordnung der Vorlauf- und Rücklauftemperatur zu den Temperatureingängen.

Der berechnete Wärmestrom weicht vom tatsächlichen Wärmestrom ab, obwohl die gemessenen Durchfluss- und Temperaturwerte richtig sind

• Überprüfen Sie die Wärmestromkoeffizienten des Fluids.
11 Wartung und Reinigung

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
</table>
| Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (ATEX, IECEx)
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUS). |

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
</table>
| Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (TR TS)
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUSRU). |

<table>
<thead>
<tr>
<th>Warnung!</th>
</tr>
</thead>
</table>
| Servicearbeiten von nicht autorisiertem und befähigtem Personal
Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.
→ Arbeiten am Messumformer dürfen nur von autorisiertem und befähigtem Personal durchgeführt werden. |

<table>
<thead>
<tr>
<th>Gefahr!</th>
</tr>
</thead>
</table>
| Arbeiten in Bergwerken oder engen Räumen
Vergiftungs-/Erstickungsgefahr durch austretende Gase, Verletzungsgefahr durch beengte Verhältnisse
→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.
→ Beachten Sie die geltenden Vorschriften. |

<table>
<thead>
<tr>
<th>Warnung!</th>
</tr>
</thead>
</table>
| Berühren spannungsführender Teile
Elektrischer Schlag oder Störlichtbögen können zu schweren Verletzungen führen. Das Messgerät kann beschädigt werden.
→ Bevor Arbeiten am Messumformer (z.B. Montage, Demontage, Anschluss, Inbetriebnahme) durchgeführt werden, muss der Messumformer von der Spannungsversorgung getrennt werden. Das Entfernen der internen Gerätesicherung ist dafür nicht ausreichend. |

<table>
<thead>
<tr>
<th>Vorsicht!</th>
</tr>
</thead>
</table>
| Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel
Das Nichtbeachten der Vorschriften kann zu schweren Verletzungen führen.
→ Bei allen Elektroarbeiten müssen die Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel beachtet werden. |
11 Wartung und Reinigung

11.1 Wartung

Der Messumformer und die Sensoren sind nahezu wartungsfrei. Zur Aufrechterhaltung der Sicherheit werden die folgenden Wartungsintervalle empfohlen:

Tab. 11.1: Empfohlene Wartungsintervalle

<table>
<thead>
<tr>
<th>Wartungsobjekt</th>
<th>Wartungsschritt</th>
<th>Intervall</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edelstahlgehäuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Messumformer</td>
<td>Sichtprüfung auf Korrosion</td>
<td>jährlich, abhängig von den</td>
<td>Reinigung</td>
</tr>
<tr>
<td>• Klemmengehäuse</td>
<td>und Beschädigung</td>
<td>Umgebungsbedingungen auch öfter</td>
<td></td>
</tr>
<tr>
<td>• Sensorbefestigung</td>
<td>Sichtprüfung auf Verschmutzung</td>
<td>jährlich, abhängig von den Umgebungsbedingungen auch öfter</td>
<td></td>
</tr>
<tr>
<td>Sensoren</td>
<td>Prüfung der Sensorankopplung am Rohr</td>
<td>jährlich</td>
<td>Austausch Koppelfolie, falls erforderlich</td>
</tr>
<tr>
<td>Messumformer</td>
<td>Prüfen der Firmware auf Updates</td>
<td>jährlich</td>
<td>Aktualisierung, falls erforderlich</td>
</tr>
<tr>
<td>Messumformer</td>
<td>Funktionsprüfung</td>
<td>jährlich</td>
<td>Auslesen der Mess- und Diagnosewerte</td>
</tr>
<tr>
<td>Messumformer und Sensoren</td>
<td>Kalibrierung</td>
<td>-</td>
<td>siehe Abschnitt 11.3</td>
</tr>
</tbody>
</table>

11.2 Reinigung

Gehäuse
- Reinigen Sie das Gehäuse mit einem weichen Tuch und Edelstahl-Reinigungs- und Pflegespray.

Sensoren
- Entfernen Sie Reste der Koppelpaste von den Sensoren mit einem weichen Papiertuch.

11.3 Kalibrierung

Wenn das Messgerät entsprechend dieser Betriebsanleitung an einem geeigneten Ort korrekt installiert, gewissenhaft genutzt und sorgfältig gewartet wird, sind keine Störungen zu erwarten.

Der Messumformer wurde im Werk kalibriert und eine Neukalibrierung ist normalerweise nicht notwendig. Eine Neukalibrierung wird empfohlen, wenn:
- die Kontaktflächen der Sensoren sichtbare Spuren von Verschleiß zeigen oder
- die Sensoren für längere Zeit bei hohen Temperaturen verwendet wurden (mehrere Monate > 130 °C für normale Sensoren oder > 200 °C für Hochtemperatursensoren)

Für eine Neukalibrierung unter Referenzbedingungen müssen entweder der Messumformer, die Sensoren oder Messumformer und Sensoren an FLEXIM geschickt werden.
12 Demontage und Entsorgung

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (ATEX, IECEx)

Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.

→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUS).

Gefahr!

Gefahr einer Explosion beim Einsatz des Messgeräts in explosionsgefährdeten Bereichen (TR TS)

Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.

→ Beachten Sie die "Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen" (siehe Dokument SIFLUXUSRU).

Warnung!

Montage, Anschluss und Inbetriebnahme von nicht autorisiertem und befähigtem Personal

Es kann zu Personen- oder Sachschäden sowie gefährlichen Situationen kommen.

→ Arbeiten am Messumformer dürfen nur von autorisiertem und befähigtem Personal durchgeführt werden.

Gefahr!

Arbeiten in Bergwerken oder engen Räumen

Vergiftungs-/Erstickungsgefahr durch austretende Gase, Verletzungsgefahr durch beengte Verhältnisse

→ Tragen Sie die vorgeschriebene persönliche Schutzausrüstung.

→ Beachten Sie die geltenden Vorschriften.

Warnung!

Berühren spannungsführender Teile

Elektrischer Schlag oder Störflichtbögen können zu schweren Verletzungen führen. Das Messgerät kann beschädigt werden.

→ Bevor Arbeiten am Messumformer (z.B. Montage, Demontage, Anschluss, Inbetriebnahme) durchgeführt werden, muss der Messumformer von der Spannungsversorgung getrennt werden. Das Entfernen der internen Gerätesicherung ist dafür nicht ausreichend.

Vorsicht!

Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel

Das Nichtbeachten der Vorschriften kann zu schweren Verletzungen führen.

→ Bei allen Elektroarbeiten müssen die Unfallverhütungsvorschriften für elektrische Anlagen und Betriebsmittel beachtet werden.
12.1 Demontage
Die Demontage erfolgt in umgekehrter Reihenfolge zur Montage.

12.2 Entsorgung
Das Messgerät muss entsprechend den geltenden Vorschriften entsorgt werden.

<table>
<thead>
<tr>
<th>Wichtig!</th>
</tr>
</thead>
</table>

Die sachgemäße Entsorgung nicht mehr benötigter Bestandteile des Messumformers und Zubehörs vermeidet Umweltschäden und schont Ressourcen.
Je nach Material müssen die entsprechenden Bestandteile entsprechend den geltenden Vorschriften dem Restmüll, dem Sondermüll oder dem Recycling zugeführt werden.
Batterien müssen getrennt von elektrischen oder elektronischen Geräten entsorgt werden. Entfernen Sie dazu die Batterien aus dem Gerät und führen Sie die Batterien dem dafür vorgesehenen Entsorgungssystem zu.
13 Anwendermodi

Über die Anwendermodi sind eine erweiterte Signal- und Messwertdiagnose sowie die Festlegung zusätzlicher an die Applikation angepasster Parameter möglich.

Es können folgende Anwendermodi ausgewählt werden:
- StandardUser
- ExpertUser
- SuperUser
- SuperUser erw.

Je nach gewähltem Anwendermodus werden im Menüpunkt Optionen\Kanal\Spez. Einstellungen weitere Optionen angezeigt.

Tab. 13.1: Menüpunkte der Anwendermodi

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleichmenge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Ein</td>
</tr>
<tr>
<td>Grenze Strömungsgeschw.</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>NoiseTrek freigeben</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Molch-Erkennung</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Turbulenzmodus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Max. Verstärkung</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Rohrsignalerkennung</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Ein</td>
</tr>
<tr>
<td>LWT-RohrwandKalib.</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Lineare Kalibrierung</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Profilkorrektur</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>Ein</td>
</tr>
<tr>
<td>Wichtungsfaktor</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Fluid: c -> T</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Aus</td>
</tr>
<tr>
<td>Mehrpunktkalibrierung (wenn in Sonderfunktionen\Messung\Mess einstellungen freigegeben)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Start im Messmodus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sensortemperatur und Sensortemp.-Überschreit. (als Quelliggröße Diagnosewerte)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Erweiterte Diagnose (im Programmzweig Optionen, Verrechnungskanäle)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Auswahl des Anwendermodus

- Wählen Sie den Menüpunkt Anwendermodus.
- Drücken Sie ENTER.
- Wählen Sie den Listeneintrag aus.
- Drücken Sie ENTER.

Spezielle Einstellungen

- Wählen Sie im Programmzweig Optionen den Messkanal.
- Drücken Sie ENTER.
- Wählen Sie den Listeneintrag Spez. Einstellungen.
- Drücken Sie ENTER.

Die Menüpunkte des Anwendermodus werden nacheinander angezeigt.

13.1 StandardUser-Modus

13.1.1 Schleichmenge
Die Schleichmenge ist ein unterer Grenzwert für die Strömungsgeschwindigkeit. Alle gemessenen Strömungsgeschwindigkeiten, die den Grenzwert unterschreiten, werden auf 0 (Null) gesetzt.

Die Schleichmenge kann von der Flussrichtung abhängen.

- Wählen Sie den Menüpunkt Optionen\Spez. Einstellungen\Schleichmenge.
- Drücken Sie ENTER, bis der Menüpunkt +Schleichmenge angezeigt wird.
- Wählen Sie Aus, wenn kein Wert für die Schleichmenge eingegeben werden soll.
- Wählen Sie Voreinstellung, wenn keine benutzerdefinierten Eingaben vorgenommen werden sollen (Voreinstellung: ±25 mm/s).
- Wählen Sie Benutzerdefiniert, um die Werte der Schleichmenge für die positive und die negative Flussrichtung festzulegen.
- Drücken Sie ENTER.

Alle Werte der Strömungsgeschwindigkeit für die positive Flussrichtung, die kleiner als dieser Grenzwert sind, werden auf 0 (Null) gesetzt.

- Geben Sie die Schleichmenge ein.
- Drücken Sie ENTER.

Alle Werte der Strömungsgeschwindigkeit für die negative Flussrichtung (als Absolutwert), die kleiner als dieser absolute Grenzwert sind, werden auf 0 (Null) gesetzt.

- Geben Sie die Schleichmenge als Absolutwert ein.
- Drücken Sie ENTER.
13.1.2 NoiseTrek-Modus
Bei Messungen mit einem hohen Gas- oder Feststoffanteil kann der NoiseTrek-Modus verwendet werden.

Hinweis!
Der TransitTime-Modus sollte wegen seiner höheren Messgenauigkeit gegenüber dem NoiseTrek-Modus bevorzugt verwendet werden.
Im NoiseTrek-Modus kann die Schallgeschwindigkeit im Fluid nicht bestimmt werden.
Folgende Diagnosewerte stehen im NoiseTrek-Modus nicht zur Verfügung: Signalqualität, Amplitudenschwankung, Laufzeitschwankung, Molch-Erkennung

• Wählen Sie im Programmzweig Optionen den Menüpunkt Spez. Einstellungen.
• Drücken Sie ENTER, bis der Menüpunkt NoiseTrek freigeben angezeigt wird.
• Wählen Sie Voreinstellung, wenn keine benutzerdefinierten Eingaben vorgenommen werden sollen.
• Wählen Sie Ein, um den NoiseTrek-Modus freizugeben. Wählen Sie Aus, um ihn zu sperren.
• Drücken Sie ENTER.
Wenn Ein gewählt wurde, können folgende Listeneinträge ausgewählt werden:
– Manuell
– HybridTrek
– Parallelstrahl
Diese Funktion steht nicht zur Verfügung, wenn im Menüpunkt Sonderfunktionen\Messung\Messmodi\Synchron. Mehrkanalmess. die synchrone Mehrkanalmessung aktiviert ist.

13.1.2.1 Manuell
Um während der Messung manuell zwischen TransitTime-Modus und NoiseTrek-Modus umzuschalten, drücken Sie, wenn die Messwertanzeige angezeigt wird, Taste \(\text{TT}\). []

13.1.2.2 HybridTrek-Modus
Wenn der NoiseTrek-Modus freigegeben ist, erscheint der Menüpunkt HybridTrek.

• Drücken Sie ENTER.

WENN das automatische Umschalten zwischen TransitTime-Modus und NoiseTrek-Modus aktiviert wurde, müssen zusätzliche Parameter konfiguriert werden.
• Geben Sie die Zeit ein, nach der der Messumformer bei Fehlen gültiger Messwerte im TransitTime-Modus in den NoiseTrek-Modus umschalten soll.
• Drücken Sie ENTER.
13.1.1 StandardUser-Modus

• Geben Sie die Zeit ein, nach der der Messumformer bei Fehlen gültiger Messwerte im NoiseTrek-Modus in den TransitTime-Modus umschalten soll.
• Drücken Sie ENTER.

Bei Vorhandensein gültiger Messwerte im NoiseTrek-Modus kann regelmäßig in den TransitTime-Modus umgeschaltet werden, um zu prüfen, ob eine Messung im TransitTime-Modus wieder möglich ist. Der Zeitabstand und die Dauer der Prüfung des TransitTime-Modus werden folgendermaßen eingestellt:
• Geben Sie die Zeit ein, nach der der Messumformer in den TransitTime-Modus umschalten soll. Wenn 0 (Null) eingegeben wird, schaltet der Messumformer nicht in den TransitTime-Modus um.
• Drücken Sie ENTER.

• Geben Sie die Zeit ein, nach der der Messumformer bei Fehlen gültiger Messwerte im TransitTime-Modus wieder in den NoiseTrek-Modus umschalten soll.
• Drücken Sie ENTER.

13.1.2.3 NoiseTrek-Parallelstrahl-Modus

Der NoiseTrek-Parallelstrahl-Modus arbeitet mit parallel angebrachten Sensoren. Er dient der Verbesserung der Signalqualität bei Messung an kleinen Rohren oder sehr stark dämpfenden Flüssigkeiten.

13.1.3 Turbulenzmodus

Voraussetzungen für Messung mit aktiviertem Turbulenzmodus
• Bei deaktiviertem Turbulenzmodus muss der SNR > 15 dB sein.
• Die Signalverstärkung bei aktiviertem Turbulenzmodus ist min. 3 dB kleiner als bei deaktiviertem Turbulenzmodus. Die Signalverstärkung muss dazu jeweils bei Strömungsgeschwindigkeiten am Arbeitspunkt gemessen werden, wo starke Turbulenz vermutet wird.

Wenn diese Kriterien erfüllt sind, wird die spezifizierte Messunsicherheit auch mit aktiviertem Turbulenzmodus eingehalten.

Wenn diese Kriterien nicht erfüllt sind, dann ist eine Messung bei deaktiviertem Turbulenzmodus zu bevorzugen.
13.1 StandardUser-Modus

13.1.4 Mehrpunktkalibrierung
Es ist möglich, eine Messwertreihe einzugeben, um eine Kalibrierkurve für die Strömungsgeschwindigkeit zu definieren.

Aufnahme der Messwertreihe:
- Starten Sie eine Messung mit dem Messumformer und einem Referenzgerät.
- Erhöhen Sie schrittweise den Wert für die Strömungsgeschwindigkeit. Der Messbereich muss mit dem späteren Arbeitsbereich identisch sein.
- Notieren oder speichern Sie die Messwerte.

Eingabe der Messwertreihe:
- Wählen Sie im Programmzweig Optionen den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt Mehrpunktkalibrierung angezeigt wird.

13.1.5 Starten im Messmodus
Für manche Applikationen ist es notwendig, die Messung in einem bestimmten Messmodus zu starten.

Optionen\Spez. Einstellungen\Start im Messmodus
- Wählen Sie im Programmzweig Optionen den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt Start im Messmodus angezeigt wird.
Der Menüpunkt **Start im Messmodus** wird nur angezeigt, wenn FastFood-Modus oder NoiseTrek-Modus freigegeben wurde.

- Wählen Sie TransitTime, FastFood oder NoiseTrek, um die Messung im jeweiligen Modus zu starten.
- Drücken Sie ENTER.

Optionen\Spez. Einstellungen\Start im Messmodus\Nur Modus

Die Messmodi FastFood und NoiseTrek können nur gewählt werden, wenn sie im Messumformer verfügbar und aktiviert sind.

Diese Funktion steht nicht zur Verfügung, wenn im Menüpunkt Sonderfunktionen\Messung\Messmodi\Synch. Mehrkanalmess. die synchrone Mehrkanalmessung aktiviert ist.

13.1.6 Berechnen der Fluidtemperatur aus der Schallgeschwindigkeit des Fluids

Optionen\Spez. Einstellungen\Fluid: c -> T

- Wählen Sie im Programmzweig **Optionen** den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt **Fluid: c -> T** angezeigt wird.
- Wählen Sie **Ein**, wenn die Fluidtemperatur aus der Schallgeschwindigkeit berechnet werden soll. Wählen Sie **Aus**, wenn die Fluidtemperatur nicht aus der Schallgeschwindigkeit berechnet werden soll.
- Drücken Sie ENTER.

13.2 ExpertUser-Modus

Einige Menüpunkte, die im StandardUser-Modus nicht sichtbar sind, werden angezeigt.

Hinweis!

Hinweis!

13.2.1 Grenzwert der Strömungsgeschwindigkeit

In stark gestörten Umgebungen können einzelne Ausreißer bei den Messwerten der Strömungsgeschwindigkeit auftreten. Wenn die Ausreißer nicht verworfen werden, wirken sie sich auf alle abgeleiteten Messgrößen aus, die dann für die Integration ungeeignet sind (z.B. Impulsausgänge).

Im ExpertUser-Modus kann ein Grenzwert der Strömungsgeschwindigkeit eingegeben werden. Es ist möglich, alle gemessenen Strömungsgeschwindigkeiten zu ignorieren, die den eingestellten Grenzwert überschreiten oder unterschreiten. In diesem Fall wird ein Fehler ausgegeben.

Optionen\Spez. Einstellungen\Grenze Strömungsgeschw.

- Wählen Sie im Programmzweig **Optionen** den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt **Grenze Strömungsgeschw.** angezeigt wird.
- Wählen Sie **Aus**, wenn kein Grenzwert für die Strömungsgeschwindigkeit eingegeben werden soll.
- Wählen Sie **Voreinstellung**, wenn keine benutzerdefinierten Eingaben vorgenommen werden sollen.
- Wählen Sie **Benutzerdefiniert**, um einen Grenzwert für die Strömungsgeschwindigkeit festzulegen.
- Drücken Sie ENTER.
13.2.2 Maximale Signalverstärkung
Um zu verhindern, dass Stör- und/oder Rohrwandsignale (z.B. bei einem leergelaufenen Rohr) als Nutzsignale interpretiert werden, kann eine max. Signalverstärkung festgelegt werden. Wenn die Signalverstärkung größer ist als die max. Signalverstärkung:
• kann die Messgröße nicht ermittelt werden und der Messwert wird als ungültig markiert
• wird während der Messung hinter der Maßeinheit eine Raute angezeigt (im normalen Fehlerfall wird ein Fragezeichen angezeigt)

Hinweis!
Wenn der Grenzwert der Strömungsgeschwindigkeit zu niedrig oder zu hoch gewählt wird, ist eine Messung unter Umständen nicht möglich, da die meisten Messwerte als ungültig markiert werden.

13.2.3 Rohrsignalerkennung
Bei der Bewertung der Plausibilität des Signals wird geprüft, ob sich die Schallgeschwindigkeit innerhalb eines festgelegten Bereichs befindet. Die dabei verwendete absolute Schwelle der Schallgeschwindigkeit des Fluids ergibt sich aus dem größeren der folgenden Werte:
• absolute Schwelle, Voreinstellung: 1848 m/s
• Wert der Schallgeschwindigkeitskurve des Fluids am Arbeitspunkt plus relative Schwelle, Voreinstellung der relativen Schwelle: 200 m/s
13.2 ExpertUser-Modus FLUXUS F736

Optionen \ Spez. Einstellungen \ Rohrsignalerkennung

- Wählen Sie im Programmzweig Optionen den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt Rohrsignalerkennung angezeigt wird.
- Wählen Sie Aus, wenn ohne Rohrsignalerkennung gemessen werden soll.
- Wählen Sie Voreinstellung, wenn keine benutzerdefinierten Eingaben vorgenommen und die voreingestellten Werte verwendet werden sollen.
- Wählen Sie Benutzerdefiniert, um Werte zur Rohrsignalerkennung festzulegen.
- Drücken Sie ENTER.

Optionen \ Spez. Einstellungen \ Absolute Schwelle

- Geben Sie für den Messkanal den Wert der absoluten Schwelle ein.
- Drücken Sie ENTER.

Optionen \ Spez. Einstellungen \ Relative Schwelle

- Geben Sie für den Messkanal den Wert der relativen Schwelle ein.
- Drücken Sie ENTER.

Beispiel

Absolute Schwelle: 2007 m/s
Relative Schwelle: 600 m/s

Wert der Schallgeschwindigkeitskurve am Arbeitspunkt: 1546 m/s
Da 1546 m/s + 600 m/s = 2146 m/s größer ist als die absolute Schwelle von 2007 m/s, wird dieser Wert bei der Bewertung der Plausibilität des Signals als absolute Schwelle der Schallgeschwindigkeit verwendet.

13.2.4 Profilkorrektur

Für die Berechnung des strömungsmechanischen Kalibrierfaktors kRe können im Messumformer folgende Versionen ausgewählt werden:
- kRe 1.0: Profilkorrektur (Vorgängerversion)
- kRe 2.0: verbesserte Profilkorrektur (aktuelle Version, Voreinstellung)
- kRe 2.0 Störstellenkorr.: verbesserte Profilkorrektur bei nicht idealen Einlaufbedingungen für die positive Flussrichtung (negative Flussrichtung ohne Störstellenkorrektur)
- kRe 2.0 Störst. bidirekt.: verbesserte Profilkorrektur bei nicht idealen Einlaufbedingungen für die positive und die negative Flussrichtung (automatische Umschaltung der Profilkorrektur in Abhängigkeit von der Flussrichtung)

Für die Einstellung der Profilkorrektur sind folgende Schritte erforderlich:
- Auswahl der Version der Profilkorrektur global im Programmzweig Sonderfunktionen
- Auswahl der Störstellenart im Programmzweig Parameter
- Eingabe des Störstellenabstands im Programmzweig Parameter, wenn kRe 2.0 Störstellenkorr. oder kRe 2.0 Störst. bidirekt. ausgewählt wurde

Hinweis!

Wenn kRe 2.0 Störstellenkorr. oder kRe 2.0 Störst. bidirekt. ausgewählt wurde, müssen die Sensoren in Reflexanordnung, X-Anordnung oder versetzter X-Anordnung montiert werden (Kompensation von Querströmungseffekten).
Auswahl der Version

• Wählen Sie im Programmzweig Sonderfunktionen den Menüpunkt Messeinstellungen.
• Drücken Sie ENTER, bis der Menüpunkt Profilkorrektur angezeigt wird.
• Wählen Sie einen Listeneintrag (Voreinstellung: kRe 2.0).
• Drücken Sie ENTER.

Auswahl der Störstellenart

• Wählen Sie einen Listeneintrag aus.
• Drücken Sie ENTER.
Wenn kRe 2.0 Störstellenkorr. oder kRe 2.0 Störst. bidirekt. ausgewählt wurde, müssen Parameter zu den Störstellen eingegeben werden.

<table>
<thead>
<tr>
<th>Störstellenart</th>
<th>weitere Eingaben</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°-Krümmer</td>
<td>Störstellenabstand (l)</td>
<td></td>
</tr>
<tr>
<td>Doppelkrümmer</td>
<td>Störstellenabstand (l₁) Abstand zw. Krümmern (l₂)</td>
<td></td>
</tr>
<tr>
<td>Raumkrümmer</td>
<td>Störstellenabstand (l₁) Abstand zw. Krümmern (l₂)</td>
<td></td>
</tr>
</tbody>
</table>

13.2.4.1 Messstellenspezifische Profilkorrektur
In Sonderfällen kann eine messstellenspezifische Profilkorrektur verwendet werden.

<table>
<thead>
<tr>
<th>Störstellenart</th>
<th>weitere Eingaben</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°-Krümmer</td>
<td>Störstellenabstand (l)</td>
<td></td>
</tr>
<tr>
<td>Doppelkrümmer</td>
<td>Störstellenabstand (l₁) Abstand zw. Krümmern (l₂)</td>
<td></td>
</tr>
<tr>
<td>Raumkrümmer</td>
<td>Störstellenabstand (l₁) Abstand zw. Krümmern (l₂)</td>
<td></td>
</tr>
</tbody>
</table>

13.2.4.1 Messstellenspezifische Profilkorrektur
In Sonderfällen kann eine messstellenspezifische Profilkorrektur verwendet werden.

• Wählen Sie den Programmzweig Optionen.
• Drücken Sie ENTER.
• Wählen Sie den Kanal, für den die Profilkorrektur eingestellt werden soll.
• Wählen Sie den Menüpunkt Spez. Einstellungen.
• Drücken Sie ENTER, bis der Menüpunkt Profilkorrektur angezeigt wird.
• Wählen Sie Aus, um die Profilkorrektur für den Kanal auszuschalten.
• Wählen Sie Voreinstellung, wenn als Profilkorrektur die globale Einstellung aus dem Programmzweig Sonderfunktionen verwendet werden soll.
• Wählen Sie Benutzerdefiniert, um eine messstellenspezifische Profilkorrektur zu verwenden.
• Drücken Sie ENTER.
Wenn der Listeneintrag Benutzerdefiniert gewählt wurde, werden nun die Parameter der messstellenspezifischen Profilkorrektur angezeigt. Die Parameter der Profilkorrektur werden vorzugsweise über die Serviceschnittstelle auf den Messumformer übertragen, können aber auch hier eingegeben werden.
13.2.5 Erweiterte Diagnose
Bei den Verrechnungskanälen stehen weitere Diagnosewerte zur Verfügung. Diese können über die Ausgänge des Messumformers ausgegeben oder als Quelle der Ereignistrigger definiert werden.

13.3 SuperUser-Modus und SuperUser-erw.-Modus

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hinweis!</th>
</tr>
</thead>
</table>

13.3.1 Molch-Erkennung

- Wählen Sie im Programmzweig Optionen den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt Molch-Erkennung angezeigt wird.
- Wählen Sie Globale Einstellungen, wenn mit den globalen Einstellungen des Messumformers gemessen werden soll.
- Wenn die Molch-Erkennung in den globalen Geräteeinstellungen deaktiviert ist, aber auf einem Kanal mit Molch-Erkennung gemessen werden soll, wählen Sie für diesen Kanal Ein.
- Drücken Sie ENTER.
- Wenn die Molch-Erkennung in den globalen Geräteeinstellungen aktiviert ist, aber auf einem Kanal ohne Molch-Erkennung gemessen werden soll, wählen Sie für diesen Kanal Aus.
- Drücken Sie ENTER.

13.3.2 Rohrwandkalibrierung für Lambwellen-Sensoren
Für Lambwellen-Sensoren gibt es im Parametersatz eines Messkanals einen Kalibrierfaktor für die unkorrigierte Strömungsgeschwindigkeit. Dieser Kalibrierfaktor hängt vom Rohrmaterial ab. Die Rohrwandkalibrierung für Lambwellen-Sensoren wird wirksam, wenn beim Start der Messung folgende Bedingungen erfüllt sind:

- Lambwellen-Sensoren werden verwendet
- die Rohrwandkalibrierung ist aktiviert
- ein Faktor für das Rohrmaterial ist definiert, das im Programmzweig Parameter ausgewählt wurde

Der Faktor kann im Messumformer aktiviert werden.

Hinweis!

Hinweis!
13 Anwendermodi

13.3 SuperUser-Modus und SuperUser-erw.-Modus

- Wählen Sie im Programmzweig **Optionen** den Menüpunkt **Spez. Einstellungen**.
- Drücken Sie ENTER, bis der Menüpunkt **LWT-Rohrwandkalib.** angezeigt wird.
- Wählen Sie **Aus**, wenn ohne Rohrwandkalibrierung gemessen werden soll.
- Wählen Sie **Voreinstellung**, wenn keine benutzerdefinierten Eingaben vorgenommen werden sollen.
- Wählen Sie **Ein**, um die Werte für die Rohrwandkalibrierung festzulegen.
- Drücken Sie ENTER.

13.3.3 Lineare Kalibrierung

Es kann eine Korrektur der Strömungsgeschwindigkeit festgelegt werden:

\[v_{\text{cor}} = m \cdot v + n \]

mit

- \(v \) – gemessene Strömungsgeschwindigkeit
- \(m \) – Faktor, Bereich: -2...+2
- \(n \) – Offset, Bereich: -12...+12 cm/s
- \(v_{\text{cor}} \) – korrigierte Strömungsgeschwindigkeit

Alle von der Strömungsgeschwindigkeit abgeleiteten Größen werden dann mit der korrigierten Strömungsgeschwindigkeit berechnet.

Hinweis!

Während der Messung wird nicht angezeigt, dass die Korrektur der Strömungsgeschwindigkeit aktiviert ist.

Beispiel

Faktor: 1.1
Offset: -10 cm/s = -0.1 m/s
Wenn eine Strömungsgeschwindigkeit \(v = 5 \text{ m/s} \) gemessen wird, wird sie vor der Berechnung abgeleiteter Größen folgendermaßen korrigiert:
\[v_{\text{cor}} = 1.1 \cdot 5 \text{ m/s} - 0.1 \text{ m/s} = 5.4 \text{ m/s} \]
13.3.4 Wichtungsfaktor

Der Wichtungsfaktor für Kanal x ergibt sich aus der mit dem Kanal x gemessenen Strömungsgeschwindigkeit \(v_x \) und der mittleren Strömungsgeschwindigkeit aller Kanäle \(v_m \):

\[
wx = \frac{v_m}{v_x}
\]

Der Wichtungsfaktor kann im Messumformer aktiviert werden.

Beispiel

Faktor: -1
Offset: 0
Nur das Vorzeichen der Messwerte ändert sich.

Hinweis!

Die Korrekturdaten werden erst gespeichert, wenn eine Messung gestartet wird. Wenn der Messumformer ausgeschaltet wird, ohne dass eine Messung gestartet wurde, gehen die eingegebenen Korrekturdaten verloren.

13.3.5 Berechnen der Fluidtemperatur aus der Schallgeschwindigkeit des Fluids

Optionen\ spez. Einstellungen\ Wichtungsfaktor

- Wählen Sie im Programmzweig Optionen den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt Wichtungsfaktor angezeigt wird.
- Wählen Sie Aus, wenn ohne Wichtungsfaktor gemessen werden soll.
- Wählen Sie Voreinstellung, wenn keine benutzerdefinierten Eingaben vorgenommen werden sollen.
- Wählen Sie Ein, um den Wichtungsfaktor festzulegen.
- Drücken Sie ENTER.

Wenn im Menüpunkt Sonderfunktionen\Messung\Messmodi\Synch. Mehrkanalmess. die synchrone Mehrkanalmessung aktiviert ist, wird der Wichtungsfaktor für Messkanal A, B, C und D separat eingegeben.

Optionen\ spez. Einstellungen\ Fluid: c -> T

- Wählen Sie im Programmzweig Optionen den Menüpunkt Spez. Einstellungen.
- Drücken Sie ENTER, bis der Menüpunkt Fluid: c -> T angezeigt wird.
- Wählen Sie Ein, wenn die Fluidtemperatur aus der Schallgeschwindigkeit berechnet werden soll. Wählen Sie Aus, wenn die Fluidtemperatur nicht aus der Schallgeschwindigkeit berechnet werden soll.
- Drücken Sie ENTER.

Wenn der Messumformer im Modus SuperUser oder SuperUser erw. ist und Sie Ein gewählt haben, erscheinen die Optionen der Temperaturberechnung.
• Wählen Sie **Mit Kalibrierung**, wenn eine Kalibrierung für die Temperaturbestimmung erfolgen soll. Beim Starten der Messung wird aus der Differenz zwischen der eingegebenen Fluidtemperatur und der aus der Schallgeschwindigkeit berechneten Fluidtemperatur ein Offset bestimmt. Die Fluidtemperatur muss eingegeben werden.

• Drücken Sie ENTER.

• Wählen Sie **Ohne Kalibrierung**, wenn kein Messwert für die Temperatur zu Verfügung steht.

• Drücken Sie ENTER.

Hinweis!
Wenn die Bestimmung der Fluidtemperatur aus der Schallgeschwindigkeit ohne Kalibrierung erfolgt, kann es zu großen Temperaturabweichungen kommen.

• Wählen Sie **Benutzerdefiniert**, wenn der Offset eingeben werden soll.

• Drücken Sie ENTER.

• Geben Sie den Offset ein.

• Drücken Sie ENTER.

13.3.6 Sensortemperatur und Sensortemperaturüberschreitung als Diagnosewerte
Bei der Konfiguration von Ausgängen stehen im Menüpunkt **Diagnosewerte** die Listeinträge **Sensortemperatur** und **Sensortemp.-überschreit.** zur Verfügung. Die Diagnosewerte können über die Ausgänge des Messumformers ausgegeben oder als Quelle der Ereignistrigger definiert werden. Der Diagnosewert **Sensortemperatur** ist nur auf Messkanälen verfügbar.

Optionen\Kanal...\Ausgänge...\Quellgröße

• Wählen Sie als Quellgröße **Diagnosewerte**.

• Drücken Sie ENTER.

• Wählen Sie den Listeneintrag für die Größe, die ausgegeben werden soll.

• Drücken Sie ENTER.

Tab. 13.3: Quellgröße Diagnosewerte

<table>
<thead>
<tr>
<th>Quellgröße</th>
<th>Listeneintrag</th>
<th>Ausgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosewerte</td>
<td>Sensortemperatur</td>
<td>Mittelwert der Temperaturen der beiden Sensoren</td>
</tr>
<tr>
<td></td>
<td>Sensortemp.-überschreit.</td>
<td>Statusinformation: ja/nein</td>
</tr>
</tbody>
</table>
14 Ausgänge

14.1 Konfigurieren eines Digitalausgangs als Binärausgang

Wenn der Messumformer mit Ausgängen ausgestattet ist, müssen sie konfiguriert werden. Für das Konfigurieren eines Analogausgangs siehe Abschnitt 9.2.6.

Der Messumformer kann auch mit Digitalausgängen ausgestattet sein. Der Digitalausgang fasst folgende Funktionen zusammen:

- Binärausgang (Ausgabe von binären Schaltzuständen)
- Impulsausgang (integrierende Ausgabe von Mengen)
- Frequenzausgang (skalierte Ausgabe von Durchflussgrößen)

Die Auswahl dieser Funktionen erfolgt durch Wahl der Messgröße.

Ein Digitalausgang schaltet, wenn eine der Schaltbedingungen erfüllt ist:

- der Messwert überschreitet oder unterschreitet einen Grenzwert
- der Messwert liegt innerhalb oder außerhalb eines festgelegten Bereichs
- eine Messung ist nicht möglich
- ein Ereignis tritt ein

Zuordnen eines Ausgangs

Der Ausgang wird dem ausgewählten Kanal zugeordnet.

Optionen \ Kanal Y

- Wählen Sie im Programmzweig Optionen den Kanal (hier: Kanal Y).
- Drücken Sie ENTER.

Diese Anzeige erscheint nicht, wenn der Messumformer nur einen Messkanal hat.
- Wählen Sie den Listeneintrag Ausgänge.
- Drücken Sie ENTER.

Optionen \ Kanal x \ Ausgänge \ Digitalausgang B1

- Wählen Sie den Ausgang, der dem Kanal zugeordnet werden soll (hier: Digitalausgang B1).
- Drücken Sie ENTER.

Wenn der Ausgang bereits einem Kanal zugeordnet wurde, wird das angezeigt.
Beispiel: Digitalausgang B1 (A:)

<table>
<thead>
<tr>
<th>Quellgröße</th>
<th>Binärausgang</th>
<th>Impulsausgang</th>
<th>Frequenzausgang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statuswert</td>
<td>Ereigniswert</td>
<td></td>
</tr>
<tr>
<td>Messgrößen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schallgeschwind.</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Durchflussgrößen</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mengenzähler</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Impuls</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Fluideigenschaften</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Diagnosewerte</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sonstiges (Ben.-def. Eing. 1...4)</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Ereignisse</td>
<td>Ereignistrigger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 14.1: Ausgabe über Digitalausgänge
• Wählen Sie *Ja*, um die Einstellungen für einen bereits zugeordneten Ausgang zu ändern oder um einen Ausgang neu zuzuordnen.
• Wählen Sie *Nein*, um die Zuordnung zu löschen und zum vorherigen Menüpunkt zurückzukehren.
• Drücken Sie *ENTER*.

Zuordnen einer Quellgröße

• Wählen Sie die Quellgröße.
• Drücken Sie *ENTER*.
• Wählen Sie den Listeneintrag *Status*.
• Drücken Sie *ENTER*.

Wenn Sie *Ereignistrigger* als Quellgröße gewählt haben, erscheint **Ruhezustand** als Eigenschaft für den Binärausgang.

14.1.1 Festlegen der Schaltfunktion für Statuswert/Ereigniswert

• Wählen Sie die Schaltfunktion für das Ausgeben des Statuswerts/Ereigniswerts.
• Drücken Sie *ENTER*.

Tab. 14.3: Auswahl der Schaltfunktion

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Schaltfunktion</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status OK</td>
<td>Geschlossen</td>
<td>• Messwert gültig: Binärausgang geschlossen</td>
</tr>
<tr>
<td>(Statuswert)</td>
<td></td>
<td>• Messwert ungültig: Binärausgang offen</td>
</tr>
<tr>
<td></td>
<td>Offen</td>
<td>• Messwert gültig: Binärausgang offen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messwert ungültig: Binärausgang geschlossen</td>
</tr>
<tr>
<td>Ruhezustand</td>
<td>Offen</td>
<td>• Ereignis tritt ein: Binärausgang geschlossen</td>
</tr>
<tr>
<td>(Ereigniswert)</td>
<td></td>
<td>• Ereignis noch nicht eingetreten: Binärausgang offen</td>
</tr>
<tr>
<td></td>
<td>Geschlossen</td>
<td>• Ereignis tritt ein: Binärausgang offen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ereignis noch nicht eingetreten: Binärausgang geschlossen</td>
</tr>
</tbody>
</table>

Wenn nicht gemessen wird, sind alle Binärausgänge offen (stromlos), unabhängig von der eingestellten Schaltfunktion.
Klemmenbelegung

• Drücken Sie ENTER.

Funktionstest des Ausgangs

Die Funktion des Ausgangs kann nun überprüft werden.
• Schließen Sie ein Multimeter an den Ausgang an.

Optionen\Kanal x\Ausgänge\...\B1 Signal testen

• Wählen Sie Ja, um den Ausgang zu testen. Wählen Sie Nein, um den nächsten Menüpunkt anzuzeigen.
• Drücken Sie ENTER.

Optionen\Kanal x\Ausgänge\...\B1 Testwert eingeb.

• Wählen Sie einen Listeneintrag als Testwert.
• Drücken Sie ENTER.

Tab. 14.4: Funktionstest des Ausgangs – Signal

<table>
<thead>
<tr>
<th>Listeneintrag</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlossen</td>
<td>• Binärausgang ist stromführend
• Messwert muss niederohmig sein</td>
</tr>
<tr>
<td>Offen</td>
<td>• Binärausgang ist stromlos
• Messwert muss hochohmig sein</td>
</tr>
</tbody>
</table>

• Wählen Sie Wiederholen, um den Test zu wiederholen, Beenden, um den nächsten Menüpunkt anzuzeigen.
• Drücken Sie ENTER.

Optionen\Kanal x\Ausgänge\...\B1 Messb. testen

• Wählen Sie Ja, um den Status des Ausgangssignals zu testen. Wählen Sie Nein, um den nächsten Menüpunkt anzuzeigen.
• Drücken Sie ENTER.

Optionen\Kanal x\Ausgänge\...\B1 Testwert eingeb.

• Wählen Sie einen Listeneintrag als Testwert.
• Drücken Sie ENTER.
14 Ausgänge

14.2 Konfigurieren eines Digitalausgangs als Impulsausgang

Ein Impulsausgang ist ein integrierender Ausgang, der einen Impuls sendet, wenn das Volumen oder die Masse des Fluids, das an der Messstelle vorbeigeströmt ist, einen bestimmten Wert (Impulswertigkeit) erreicht hat. Die integrierte Größe ist die ausgewählte Messgröße. Sobald ein Impuls gesendet wurde, beginnt die Integration erneut. Vor dem Aktivieren muss der Digitalausgang konfiguriert werden.

Funktionstest des Ausgangs – Messbereich

<table>
<thead>
<tr>
<th>Listeneintrag</th>
<th>Schaltfunktion</th>
<th>Testwert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status OK</td>
<td>Geschlossen</td>
<td>Status OK</td>
<td>• Binärausgang ist stromführend</td>
</tr>
<tr>
<td>(Statuswert)</td>
<td></td>
<td></td>
<td>• Messwert muss niederohmig sein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status Fehler</td>
<td>• Binärausgang ist stromlos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
<tr>
<td>Offen</td>
<td></td>
<td>Status OK</td>
<td>• Binärausgang ist stromlos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status Fehler</td>
<td>• Binärausgang ist stromführend</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Messwert muss niederohmig sein</td>
</tr>
<tr>
<td>Ruhezustand</td>
<td>Geschlossen</td>
<td>Passiv</td>
<td>• Binärausgang ist stromführend</td>
</tr>
<tr>
<td>(Ereigniswert)</td>
<td></td>
<td></td>
<td>• Messwert muss niederohmig sein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aktiv</td>
<td>• Binärausgang ist stromlos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offen</td>
<td>• Binärausgang ist stromlos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aktiv</td>
<td>• Binärausgang ist stromführend</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Messwert muss niederohmig sein</td>
</tr>
</tbody>
</table>

- Wählen Sie **Wiederholen**, um den Test zu wiederholen, **Beenden**, um den nächsten Menüpunkt anzuzeigen.
- Drücken Sie **ENTER**.

Konfigurieren eines Digitalausgangs als Impulsausgang

Erklärungen

<table>
<thead>
<tr>
<th>Schaltfunktion</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlossen</td>
<td>• Binärausgang ist stromführend</td>
</tr>
<tr>
<td></td>
<td>• Messwert muss niederohmig sein</td>
</tr>
<tr>
<td>Passiv</td>
<td>• Binärausgang ist stromführend</td>
</tr>
<tr>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
<tr>
<td>Aktiv</td>
<td>• Binärausgang ist stromlos</td>
</tr>
<tr>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
<tr>
<td>Offen</td>
<td>• Binärausgang ist stromlos</td>
</tr>
<tr>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
</tbody>
</table>

Tab. 14.5: Funktionstest des Ausgangs – Messbereich

- Wählen Sie **Wiederholen**, um den Test zu wiederholen, **Beenden**, um den nächsten Menüpunkt anzuzeigen.
- Drücken Sie **ENTER**.

Optionen

<table>
<thead>
<tr>
<th>Optionen</th>
<th>Kanal x \ Ausgänge \ Digitalausgang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optionen</td>
<td>Kanal A \ Ausgänge \ Digitalausgang</td>
</tr>
<tr>
<td>Optionen</td>
<td>Kanal B1 \ Quellgröße \ Impuls</td>
</tr>
</tbody>
</table>

- Wählen Sie den Menüpunkt **Optionen** Kanal A \ Ausgänge \ Digitalausgang.
- Drücken Sie **ENTER**.

Zuordnen einer Quellgröße

<table>
<thead>
<tr>
<th>Optionen</th>
<th>Kanal x \ Ausgänge \ Digitalausgang B1 \ Quellgröße \ Impuls</th>
</tr>
</thead>
</table>

- Wählen Sie als Quellgröße **Impuls**.
- Drücken Sie **ENTER**.

<table>
<thead>
<tr>
<th>Optionen</th>
<th>Kanal x \ Ausgänge \ Digitalausgang B1 \ Quellgröße \ Impuls \ Impuls +V</th>
</tr>
</thead>
</table>

- Wählen Sie einen Listeneintrag **(hier: Impuls +V)** aus.
- Drücken Sie **ENTER**.

Optionen

<table>
<thead>
<tr>
<th>Optionen</th>
<th>Kanal x \ Ausgänge \ Digitalausgang B1 \ Quellgröße \ Impuls \ Impuls +V</th>
</tr>
</thead>
</table>

- Wählen Sie einen Listeneintrag **(hier: Impuls +V)** aus.
- Drücken Sie **ENTER**.
14.2 Konfigurieren eines Digitalausgangs als Impulsausgang

14.2.1 Impulsausgabe durch Definition der Impulswertigkeit

Optionen\Kanal x\Ausgänge\Digitalausgang B1\Quellgröße\Impuls\Impulsausgabe

• Wählen Sie Impulsausgabe.
• Drücken Sie ENTER.

Optionen\Kanal x\Ausgänge\Digitalausgang B1\...\Impulsmodus

Der Impulsausgang kann in 2 verschiedenen Modi betrieben werden:

<table>
<thead>
<tr>
<th>Modus</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauerimpulse</td>
<td>• Ausgabe einer kontinuierlichen Impulsfolge, die das zeitliche Verhalten der korrespondierenden Durchflussgröße (Volumenstrom, Massenstrom) abbildet, bei gleichzeitiger Mengenzählung</td>
</tr>
<tr>
<td></td>
<td>• kleinste Impulspause = Impulsbreite bei maximaler Impulsrate (die Impulsbreite ist konstant)</td>
</tr>
<tr>
<td>Burst-Impulse</td>
<td>• Ausgabe einer diskontinuierlichen Impulsfolge, die das Verhalten des Mengenzählers abbildet</td>
</tr>
<tr>
<td></td>
<td>• mehrere Impulse können stoßweise mit äquidistanten Impulsabständen (Impulspause = Impulsbreite) auftreten</td>
</tr>
<tr>
<td></td>
<td>• dient der reinen Mengenzählung</td>
</tr>
<tr>
<td></td>
<td>• maximale Impulsrate (richtet sich nach der Impulsbreite, die konstant ist)</td>
</tr>
</tbody>
</table>

• Wählen Sie einen Modus aus.
• Drücken Sie ENTER.

Optionen\Kanal x\Ausgänge\Digitalausgang B1\...\Impulsmodus\Impulsmodus\Impulswertigkeit

• Geben Sie die Impulswertigkeit ein.
Die Maßeinheit wird entsprechend der aktuellen Messgröße angezeigt.
Wenn die gezählte Messgröße die eingegebene Impulswertigkeit erreicht, wird ein Impuls gesendet.
• Drücken Sie ENTER.

Optionen\Kanal x\Ausgänge\Digitalausgang B1\...\Impulsmodus\Impulsbreite

• Geben Sie die Impulsbreite ein.
Der Bereich möglicher Impulsbreiten hängt von der Spezifikation des Geräts (z.B. Zähler, SPS) ab, das am Ausgang angeschlossen werden soll.
• Drücken Sie ENTER.
14.2.2 Impulsausgabe durch Definition der Impulse pro Einheit

- Wählen Sie Impulse pro Einheit.
- Drücken Sie ENTER.

Wenn Anderer Bereich ausgewählt wird, geben Sie einen Wert für Ausgabe MAX ein.

- Geben Sie die Anzahl der Impulse pro Einheit ein.
- Drücken Sie ENTER.

Die Maßeinheit wird entsprechend der aktuellen Messgröße angezeigt.

14.2.3 Ausgabeoptionen

- Wählen Sie die Einstellung für den Ruhezustand:

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offen</td>
<td>Der Impulsausgang ist stromführend, wenn ein Impuls gesendet wird, und stromlos, wenn kein Impuls gesendet wird (Ruhezustand).</td>
</tr>
<tr>
<td>Geschlossen</td>
<td>Der Impulsausgang ist stromlos, wenn ein Impuls gesendet wird, und stromführend, wenn kein Impuls gesendet wird (Ruhezustand).</td>
</tr>
</tbody>
</table>

Klemmenbelegung

Die Klemmen für den Anschluss des Ausgangs werden angezeigt.
- Drücken Sie ENTER.

Funktionstest des Ausgangs

- Wählen Sie Ja, um den Status des Ausgangssignals zu testen. Wählen Sie Nein, um den nächsten Menüpunkt anzuzeigen.
- Drücken Sie ENTER.

Nach dem Test wird der Testwert angezeigt.
- Wählen Sie einen Listeneintrag als Testwert.
- Drücken Sie ENTER.
14.3 Konfigurieren eines Digitalausgangs als Frequenzausgang

Der Frequenzausgang sendet ein Rechtecksignal mit einer Frequenz aus, die proportional zu der an den Ausgang übertragenen Quellgröße ist.

Zuordnen einer Quellgröße

- **Wählen Sie eine der folgenden Quellgrößen:**
 - Durchflussgrößen
 - Mengenzähler
 - Fluideigenschaften
 - Diagnosewerte
 - Sonstiges (Ben.-def. Eing. 1...4)
 - Schallgeschwind.

Funktionstest des Ausgangs – Signal

<table>
<thead>
<tr>
<th>Ausgabemodus</th>
<th>Testwert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse pro Einheit</td>
<td>Der eingegebene Testwert muss innerhalb des Ausgabebereichs liegen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wenn das externe Messgerät den eingegebenen Wert anzeigt, funktioniert der Ausgang.</td>
</tr>
<tr>
<td>Impulswertigkeit</td>
<td>Offen</td>
<td>• Impulsausgang ist stromlos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messwert muss hochohmig sein</td>
</tr>
<tr>
<td></td>
<td>Geschlossen</td>
<td>• Impulsausgang ist stromführend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messwert muss niederohmig sein</td>
</tr>
</tbody>
</table>

Optionen

- **Wählen Sie einen Listeneintrag (hier: Durchflussgrößen).**
- **Drücken Sie ENTER.**

- **Wählen Sie einen Listeneintrag (hier: Volumenstrom).**
- **Drücken Sie ENTER.**

- **Gehen Sie den Menüpunkt Optionen mit den folgenden Unterpunkten einmal vollständig durch:**
 - Ausgabebereich
 - Fehlerwert
 - Messbereich
 - Info Ausgang
 - Funktionstest

Für die Beschreibung der einzelnen Arbeitsschritte siehe Abschnitt 9.2.6.
15 Eingänge

Die Eingänge werden im Programmzweig **Sonderfunktionen** konfiguriert und im Programmzweig **Optionen** den einzelnen Messkanälen zugeordnet.

15.1 Konfigurieren eines Eingangs

Wenn der Messumformer mit Eingängen ausgestattet ist, müssen sie konfiguriert werden.

- Wählen Sie den Programmzweig **Sonderfunktionen**.
- Drücken Sie ENTER.

Die Auswahlliste enthält alle verfügbaren Eingänge.

- Wählen Sie einen Listeneintrag:
 - Strom Ix (-)
 - Temperatur Tx (-)

Wenn der Eingang bereits konfiguriert ist, wird er folgendermaßen angezeigt: Strom I1(✓).

Freigeben des Eingangs

Wenn der Eingang verwendet werden soll, muss er freigegeben werden (hier: Strom I1).

- Wählen Sie **Ja**, um die Einstellungen für einen bereits freigegebenen Eingang zu ändern oder um einen Eingang neu freizugeben.
- Wählen Sie **Nein**, um einen bereits konfigurierten Eingang zu sperren und zum vorherigen Menüpunkt zurückzukehren.
- Drücken Sie ENTER.

15.1.1 Stromeingänge

Bei der Konfiguration der Stromeingänge wird die Quellgröße ausgewählt und der Eingabe- und Messbereich festgelegt.

Auswahl der Quellgröße

- Wählen Sie die Quellgröße.

Eingabebereich

Der Eingabebereich wird nun festgelegt.

- Wählen Sie einen Listeneintrag aus:
 - 0...20 mA
 - 4...20 mA
 - Anderer Bereich

- Drücken Sie ENTER.

Wenn **Anderer Bereich** ausgewählt wird, geben Sie die Werte **Eingabe MIN** und **Eingabe MAX** ein.
Messbereich

- Geben Sie den kleinsten zu erwartenden Messwert an. Die Maßeinheit der Quellgröße wird angezeigt.
Anfang Messbereich ist der Messwert, der dem unteren Grenzwert des Eingabebereichs (Eingabe MIN) zugeordnet ist.
- Geben Sie den größten zu erwartenden Messwert an. Die Maßeinheit der Quellgröße wird angezeigt.
Ende Messbereich ist der Messwert, der dem oberen Grenzwert des Eingabebereichs (Eingabe MAX) zugeordnet ist.

Eingeben eines Fehlerwerts

Es kann ein Fehlerwert festgelegt werden, der ausgegeben wird, wenn die Quellgröße nicht zur Verfügung steht.
- Wählen Sie Ja, wenn ein Fehlerwert festgelegt werden soll.
- Drücken Sie ENTER.
- Geben Sie den Fehlerwert ein.
- Drücken Sie ENTER.

15.1.2 Temperatureingänge

Bei der Konfiguration eines Temperatureingangs wird der Temperaturfühler ausgewählt.

Auswahl des Temperaturfühlers

- Wählen Sie den Temperaturfühler aus:
 - Pt100
 - Pt1000

Aktivieren der Temperaturkorrektur

Eine Temperaturkorrektur (Offset) kann für jeden Temperatureingang festgelegt werden. Sie wird im Menüpunkt Sonderausführung\Dialoge/Menüs aktiviert.

Hinweis!

Der eingegebene Korrekturwert jedes Temperatureingangs wird gespeichert und angezeigt, wenn die Temperaturkorrektur wieder aktiviert wird.

Der Korrekturwert wird automatisch zu der gemessenen Temperatur addiert. Er wird z.B. verwendet, wenn die Kennlinien der beiden Temperaturfühler stark voneinander abweichen oder ein bekannter und konstanter Temperaturgradient zwischen der gemessenen Temperatur und der tatsächlichen Temperatur besteht.

Eingeben der Temperaturkorrektur

- Geben Sie den Offset für den Temperatureingang ein.
- Drücken Sie ENTER.
15.1.3 Festlegen einer Schaltbedingung
Wenn eine Funktion des Messumformers per Fernsteuerung ausgelöst werden soll, muss eine Schaltbedingung festgelegt werden.

• Wählen Sie Ja, wenn eine Schaltbedingung festgelegt werden soll. Wählen Sie Nein, um den nächsten Menüpunkt anzuzeigen.
• Drücken Sie ENTER.

• Wählen Sie einen Listeneintrag:
 - MAX (x>Grenzwert): Schaltbedingung ist erfüllt, wenn der Messwert den Grenzwert überschreitet
 - MIN (x<Grenzwert): Schaltbedingung ist erfüllt, wenn der Messwert den Grenzwert unterschreitet
 - ERR (x=Ausfall): Schaltbedingung ist erfüllt, wenn eine Messung nicht möglich ist
 - Im Bereich: Schaltbedingung ist erfüllt, wenn der Messwert innerhalb des festgelegten Bereichs liegt
 - Außerh. Bereich: Schaltbedingung ist erfüllt, wenn der Messwert außerhalb des festgelegten Bereichs liegt
• Drücken Sie ENTER.

• Geben Sie den Grenzwert für die Schaltbedingung ein.
• Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn MAX (x>Grenzwert) oder MIN (x<Grenzwert) ausgewählt ist.

Um ein ständiges Schalten des Ereignistriggers zu vermeiden, kann eine Hysterese festgelegt werden.
Der Ereignistrigger wird aktiviert, wenn der Messwert den oberen Grenzwert überschreitet, und deaktiviert, wenn der Messwert den unteren Grenzwert unterschreitet.
• Geben Sie einen Wert für die Hysterese ein.
Wenn Sie 0 (Null) eingeben, wird ohne Hysterese gearbeitet.
• Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn MAX (x>Grenzwert) oder MIN (x<Grenzwert) ausgewählt ist.

• Geben Sie die Mitte des Schaltbereichs ein.
• Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn Im Bereich oder Außerh. Bereich ausgewählt ist.

• Geben Sie die Breite des Schaltbereichs ein.
• Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn Im Bereich oder Außerh. Bereich ausgewählt ist.

• Geben Sie ein Zeitintervall an, nach dessen Ablauf der Ereignistrigger schalten soll.
• Drücken Sie ENTER.
15.1.4 Klemmenbelegung

Die Klemmen für den Anschluss des Eingangs werden angezeigt. Durch Drücken der Taste \[2\] oder \[8\] werden weitere Informationen angezeigt.
- Drücken Sie ENTER.

15.1.5 Funktionstest des Eingangs

Die Funktion des Eingangs kann nun überprüft werden.

Analogeingang
- Schließen Sie eine Signalquelle an den Eingang an.

<table>
<thead>
<tr>
<th>Funktionstest</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom</td>
<td>Wenn der Messumformer einen Wert anzeigt (hier: Strom), funktioniert der Eingang. Drücken Sie ENTER. Wählen Sie Wiederholen, um den Test zu wiederholen, Beenden, um den nächsten Menüpunkt anzuzeigen. Drücken Sie ENTER.</td>
</tr>
<tr>
<td>Temperatur</td>
<td>Wenn der Messumformer einen Wert anzeigt (hier: Temperatur), funktioniert der Eingang. Drücken Sie ENTER. Wählen Sie Wiederholen, um den Test zu wiederholen, Beenden, um den nächsten Menüpunkt anzuzeigen. Drücken Sie ENTER.</td>
</tr>
</tbody>
</table>

Drücken Sie Taste \[7\], um zum Hauptmenü zurückzukehren.
15.2 Zuordnen eines Eingangs

- Wählen Sie den Programmzweig Optionen.
- Drücken Sie ENTER.

Optionen\Kanal ...

- Wählen Sie den Kanal.
- Drücken Sie ENTER.
Diese Anzeige erscheint nicht, wenn der Messumformer nur einen Messkanal hat.
- Wählen Sie Eingänge zuordnen.
- Drücken Sie ENTER.

Optionen\Eingänge zuordnen

- Wählen Sie den Eingang, der dem Kanal zugeordnet werden soll. Nur installierte Eingänge werden in der Auswahlliste angezeigt.
- Wählen Sie den Listeneintrag Keine Zuordnung, wenn dem Kanal kein Eingang zugeordnet werden soll.
- Drücken Sie ENTER.
16 Messwertspeicher

Der Messumformer hat einen Messwertspeicher, in dem die Messdaten während der Messung gespeichert werden.

Hinweis
Um Messdaten zu speichern, muss der Messwertspeicher konfiguriert werden.

Folgende Daten werden gespeichert:
- Datum
- Uhrzeit
- Messstellennummer
- Rohrparameter
- Fluidparameter
- Sensordaten
- Messgröße
- Maßeinheit
- Messwerte

16.1 Konfigurieren des Messwertspeichers

Aktivieren der Kanäle zum Speichern

- Wählen Sie den Menüpunkt **Konfiguration**.
- Drücken Sie ENTER.
- Aktivieren Sie die Kanäle, deren Messdaten gespeichert werden sollen.
- Um einen Kanal auszuwählen, drücken Sie Taste 4 oder 6.
- Um einen Kanal zu aktivieren/deaktivieren, drücken Sie Taste 2.
- Drücken Sie ENTER.

Startzeitpunkt

Wenn das Speichern der Messwerte bei mehreren Messumformern synchronisiert werden soll, kann ein Startzeitpunkt eingestellt werden.
- Wählen Sie den Menüpunkt **Konfiguration**.
- Drücken Sie ENTER, bis der Menüpunkt Speichern starten angezeigt wird.
- Wählen Sie den Zeitpunkt, zu dem das Speichern gestartet werden soll.
Ereignisbasiertes Startzeitpunkt

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sofort</td>
<td>Das Speichern wird sofort gestartet.</td>
</tr>
<tr>
<td>Volle 5 Minuten</td>
<td>Das Speichern wird bei den nächsten vollen 5 Minuten gestartet.</td>
</tr>
<tr>
<td>Volle 10 Minuten</td>
<td>Das Speichern wird bei den nächsten vollen 10 Minuten gestartet.</td>
</tr>
<tr>
<td>Volle 15 Minuten</td>
<td>Das Speichern wird bei den nächsten vollen 15 Minuten gestartet.</td>
</tr>
<tr>
<td>Volle 30 Minuten</td>
<td>Das Speichern wird bei den nächsten vollen 30 Minuten gestartet.</td>
</tr>
<tr>
<td>Volle Stunde</td>
<td>Das Speichern wird bei der nächsten vollen Stunde gestartet.</td>
</tr>
<tr>
<td>Ereignisbasiert</td>
<td>Das Speichern wird beim Eintreten eines definierten Ereignisses gestartet.</td>
</tr>
</tbody>
</table>

Beispiel

aktuelle Uhrzeit: 9:06 Uhr
Einstellung: Volle 10 Minuten
Das Speichern wird um 9:10 Uhr gestartet.

Hinweis!

Es ist sicherzustellen, dass die Uhrzeit aller Messumformer synchronisiert ist.

Wenn das Speichern der Messwerte bei einem bestimmten Ereignis beginnen soll, muss als Startzeitpunkt Ereignisbasiert gewählt werden.

• Wählen Sie den Eingang oder Ereignistrigger, über den das Eintreten des Ereignisses signalisiert werden soll.
• Drücken Sie ENTER.

Die Ablagerate gibt an, wie oft die Messwerte übertragen oder gespeichert werden.

• Wählen Sie aus der Auswahlliste eine Ablagerate, mit der die Messwerte gespeichert werden sollen, wenn das Ereignis nicht eintritt.
• Drücken Sie ENTER.
• Wenn keine Messwerte gespeichert werden sollen, solange das Ereignis nicht eintritt, wählen Sie Aus.
• Drücken Sie ENTER.
16.1 Konfigurieren des Messwertspeichers

• Wählen Sie aus der Auswahl einer Ablagerate, mit der die Messwerte gespeichert werden sollen, wenn das Ereignis eintritt.
• Drücken Sie ENTER.

• Geben Sie das Zeitintervall an, in dem die Messwerte vor Eintreten des Ereignisses gespeichert werden sollen.
• Drücken Sie ENTER.

• Geben Sie das Zeitintervall an, in dem die Messwerte gespeichert werden sollen, wenn das Ereignis nicht mehr aktiviert ist.
• Drücken Sie ENTER.

Ablagerate

Die Ablagerate ist die Frequenz, mit der die Messwerte übertragen oder gespeichert werden. Wenn für den Start der Messwertspeichereing eine Zeit festgelegt wird, muss eine Ablagerate eingegeben werden.

• Wählen Sie den Menüpunkt Konfiguration aus.
• Drücken Sie ENTER, bis der Menüpunkt Ablagerate angezeigt wird.
• Wählen Sie in der Auswahl eine Ablagerate aus.
• Drücken Sie ENTER.
• Wenn Benutzerdefiniert ausgewählt wurde, müssen Sie eine Ablagerate eingeben.
• Drücken Sie ENTER.

Ablagerate des FastFood-Modus

Die Ablagerate des FastFood-Modus ist die Frequenz, mit der die Messwerte im FastFood-Modus gespeichert werden.
Ringbuffer

Der Messwertspeicher kann als linearer Speicher oder als Ringbuffer konfiguriert werden. Wenn der Ringbuffer deaktiviert und der Messwertspeicher voll ist, wird das Speichern der Messwerte beendet. Das Speichern kann fortgesetzt werden, wenn der Messwertspeicher gelöscht wurde. Wenn der Ringbuffer aktiviert und der Messwertspeicher voll ist, werden die ältesten Messwerte überschrieben. Während der Messung wird im Ringbuffer-Modus die zeitliche Kapazität des Messwertspeichers angezeigt, z.B.:

Die Anzeige Log←→ : 1d 6h 57m erscheint, wenn keine Messwerte überschrieben wurden.
Die Anzeige Log|←→| : 1d 6h 57m erscheint, wenn die alten Messwerte überschrieben wurden.

- Wählen Sie den Menüpunkt Konfiguration.
- Drücken Sie ENTER, bis der Menüpunkt Ringbuffer angezeigt wird.
- Wählen Sie Ein, wenn der Ringbuffer aktiviert werden soll.
- Drücken Sie ENTER.

Wenn der Ringbuffer deaktiviert und der Messwertspeicher voll ist, wird das Speichern der Messwerte beendet.
- Wählen Sie Aus, wenn der Ringbuffer deaktiviert werden soll.
- Drücken Sie ENTER.

Ablagemodus

- Wählen Sie den Menüpunkt Konfiguration.
- Drücken Sie ENTER, bis der Menüpunkt Ablagemodus angezeigt wird.
- Drücken Sie ENTER.
- Wählen Sie Aktueller Messwert, wenn der aktuelle Messwert gespeichert werden soll.
- Wählen Sie Mittelwert, wenn der Mittelwert aller ungedämpften Messwerte eines Ablageintervalls gespeichert werden soll.

Hinweis!
Der Ablagemodus hat keinen Einfluss auf die Ausgänge.

Hinweis!
Ablagemodus = Mittelwert
Der Mittelwert der Messgröße wird berechnet sowie der Mittelwert weiterer Größen, die dem Messkanal zugeordnet wurden, z.B. die gemessenen Temperaturen.
Wenn die Ablagerate < 5 s gewählt ist, wird Aktueller Messwert verwendet.
Wenn kein Mittelwert über das gesamte Ablageintervall ermittelt werden konnte, wird der Wert als ungültig markiert.

Weitere Parameter für das Speichern
Für folgende Parameter kann festgelegt werden, ob sie zusammen mit den Messwerten gespeichert werden.

Tab. 16.1: Parameter für das Speichern

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>Beschreibung der Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mengen speichern</td>
<td>Werte der Mengenzähler</td>
</tr>
<tr>
<td>Diagnose speichern</td>
<td>Diagnosewerte</td>
</tr>
<tr>
<td>Sensortemp. speich.</td>
<td>Sensortemperatur</td>
</tr>
</tbody>
</table>

- Wählen Sie Ja, wenn der Wert gespeichert werden soll. Wählen Sie Nein, wenn der Wert nicht gespeichert werden soll.
16.2 Löschen des Messwertspeichers

- Wählen Sie den Menüpunkt Messwerte löschen.
- Drücken Sie ENTER.
- Wählen Sie Ja oder Nein.
- Drücken Sie ENTER.

16.3 Informationen zum Messwertspeicher

- Wählen Sie den Menüpunkt Speicher-Info.
- Drücken Sie ENTER.

Folgende Informationen zum Messwertspeicher werden angezeigt:

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktiviert:</td>
<td>Messwertspeicher ist aktiviert/deaktiviert</td>
</tr>
<tr>
<td></td>
<td>Diese Anzeige erscheint nur, wenn die Messung gestartet und der Messwertspeicher aktiviert ist.</td>
</tr>
<tr>
<td>Speicher voll am</td>
<td>Messwertspeicher ist voll am (Datum)</td>
</tr>
<tr>
<td></td>
<td>Diese Anzeige erscheint nur, wenn die Messung gestartet ist und kein Ringbuffer aktiviert ist.</td>
</tr>
<tr>
<td>Speicher voll in</td>
<td>Messwertspeicher ist voll in (Zeit)</td>
</tr>
<tr>
<td></td>
<td>Diese Anzeige erscheint nur, wenn die Messung gestartet ist, kein Ringbuffer aktiviert ist und der Messwertspeicher noch nicht voll ist.</td>
</tr>
<tr>
<td>Überlauf (Datum)</td>
<td>Alte Messwerte werden überschrieben am (Datum)</td>
</tr>
<tr>
<td></td>
<td>Diese Anzeige erscheint nur, wenn die Messung gestartet ist, der Ringbuffer aktiviert ist und der Messwertspeicher noch nicht voll ist.</td>
</tr>
<tr>
<td>Kapazität (Zeit)</td>
<td>Messwertspeicher-Kapazität in (Zeit)</td>
</tr>
<tr>
<td></td>
<td>Diese Anzeige erscheint nur, wenn die Messung gestartet und der Ringbuffer aktiviert ist.</td>
</tr>
<tr>
<td>Ringbuffer:</td>
<td>Ringbuffer ist aktiviert/deaktiviert</td>
</tr>
<tr>
<td>Messw.-reihen:</td>
<td>Anzahl der gespeicherten Messwertreihen</td>
</tr>
<tr>
<td>Speicher belegt:</td>
<td>Speicherbelegung in Prozent</td>
</tr>
</tbody>
</table>
17 Datenübertragung

Die Übertragung der Daten erfolgt über die Serviceschnittstelle (USB) oder die Prozessschnittstelle (Option) des Messumformers.

17.1 Serviceschnittstellen

Über die Serviceschnittstellen (USB, LAN) können Daten vom Messumformer zum PC mit Hilfe des Programms FluxDiagReader übertragen werden.

Mit dem Programm FluxDiagReader können folgende Aufgaben ausgeführt werden:
- Messwerte, Setup-Einstellungen und Snaps auslesen und speichern
- Messwerte grafisch darstellen
- Daten im csv-Format exportieren

Für die Bedienung des Programms siehe FluxDiagReader-Hilfe.

17.1.1 LAN-Schnittstelle

Für die Verwendung der LAN-Schnittstelle müssen die Netzwerkparameter eingegeben werden.

- Wählen Sie den Programmzweig Sonderfunktionen.
- Drücken Sie ENTER.

Wählen Sie den Menüpunkt Sonderfunktionen\Kommunikation\Netzwerk.
- Drücken Sie ENTER.

Manuelle Eingabe

- Wählen Sie Manuell, um die Netzwerkparameter (IP-Adresse, Subnetzmaske und Standard-Gateway) einzugeben.

Hinweis!

Die eingegebenen Netzwerkparameter müssen mit den Netzwerkparametern des LAN übereinstimmen.

Voreinstellungen im Messumformer:
- IP-Adresse: 192.168.0.70
- Subnetzmaske: 255.255.255.0
- Standard-Gateway: 192.168.0.1

Automatische Adressierung mit DHCP

- Wählen Sie Automatisch, um die Netzwerkparameter (IP Adresse, Subnetzmaske und Standard-Gateway) automatisch über einen DHCP-Server zu ermitteln.

Hinweis!

Die Netzwerkparameter können nur automatisch ermittelt werden, wenn das LAN DHCP unterstützt.

- Wählen Sie den Menüpunkt Sonderfunktionen\Kommunikation\Netzwerk\Autokonfig. zeigen, um die automatisch ermittelten Netzwerkparameter anzuzeigen.
- Drücken Sie ENTER.

Hinweis!

Für die Datenübertragung vom PC zum Messumformer muss das Programm FluxDiag verwendet werden.
17.2 Prozessschnittstelle

RS485-Schnittstelle

- Wählen Sie den Menupunkt RS485, um die Einstellungen für die Übertragungsparameter zu ändern.
- Drücken Sie ENTER.
Diese Anzeige erscheint nur, wenn der Messumformer eine RS485-Schnittstelle hat.

Voreinstellung: 9600 bit/s, 8 Datenbits, keine Parität, 1 Stopbit
- Stellen Sie die Übertragungsparameter in den Auswahllisten ein.
 - Baud (Baudrate)
 - Datenbits
 - Stoppbits
 - Parität
 - Datenflusssteuerung
- Drücken Sie ENTER.

Die Klemmen für den Anschluss der RS485-Schnittstelle werden angezeigt.
- Drücken Sie ENTER.
18 Erweiterte Funktionen

18.1 Mengenzähler

Die Wärmemenge, das Gesamtvolumen oder die Gesamtmasse des Fluids an der Messstelle kann bestimmt werden. Es gibt 2 Mengenzähler, einen für die positive und einen für die negative Flussrichtung. Die für die Mengenzählung verwendete Maßeinheit entspricht der Wärme-, Volumen- oder Masseneinheit, die für die Messgröße ausgewählt wurde. Die Werte der Mengenzähler können während der Messung in der Statuszeile angezeigt werden.

Tab. 18.1: Tastenfunktionen

<table>
<thead>
<tr>
<th>Anzeige des Mengenzählers</th>
<th>Taste während der Messung drücken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixieren des angezeigten Mengenzählerwerts</td>
<td>Taste während der Messung min. 2 s drücken</td>
</tr>
<tr>
<td>Anzeige des Mengenzählers für die positive Flussrichtung</td>
<td>Taste während der Messung drücken</td>
</tr>
<tr>
<td>Anzeige des Mengenzählers für die negative Flussrichtung</td>
<td>Taste während der Messung drücken</td>
</tr>
<tr>
<td>Zurücksetzen der Mengenzähler auf 0 (Null)</td>
<td>Taste während der Messung 3 x drücken</td>
</tr>
<tr>
<td></td>
<td>Taste während der Messung 3 x drücken</td>
</tr>
</tbody>
</table>

Hinweis!

Ein Tastendruck wirkt sich nur auf die Mengenzähler des Messkanals aus, dessen Messwerte gerade angezeigt werden.

18.1.1 Anzahl der Dezimalstellen

Die Werte der Mengenzähler können mit max. 11 Stellen dargestellt werden, z.B. 74890046.03. Die Anzahl der Dezimalstellen (max. 4) kann festgelegt werden.

Sonderfunktionen\Mengenzähler

- Wählen Sie im Programmzweig Sonderfunktionen den Menüpunkt Mengenzähler aus.
- Drücken Sie ENTER.
- Wählen Sie Automatisch, wenn die Anzahl der Dezimalstellen dynamisch angepasst werden soll.
- Drücken Sie ENTER.

Kleine Werte der Mengenzähler werden zunächst mit 3 Dezimalstellen angezeigt. Bei größeren Werten wird die Anzahl der Dezimalstellen reduziert.

<table>
<thead>
<tr>
<th>max. Wert</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10^6</td>
<td>±0.000</td>
</tr>
<tr>
<td>< 10^7</td>
<td>±1000000.00</td>
</tr>
<tr>
<td>< 10^8</td>
<td>±1000000.0</td>
</tr>
<tr>
<td>< 10^10</td>
<td>±100000000</td>
</tr>
</tbody>
</table>

- Wählen Sie die Anzahl der Dezimalstellen.
- Drücken Sie ENTER.
Die Anzahl der Stellen ist konstant. Der max. Wert der Mengenzähler verringert sich mit der Anzahl der Dezimalstellen.

<table>
<thead>
<tr>
<th>Dezimalstellen</th>
<th>max. Wert</th>
<th>max. Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$< 10^{10}$</td>
<td>±9999999999</td>
</tr>
<tr>
<td>1</td>
<td>$< 10^{8}$</td>
<td>±999999999.9</td>
</tr>
<tr>
<td>2</td>
<td>$< 10^{7}$</td>
<td>±9999999.99</td>
</tr>
<tr>
<td>3</td>
<td>$< 10^{6}$</td>
<td>±999999.999</td>
</tr>
<tr>
<td>4</td>
<td>$< 10^{5}$</td>
<td>±99999.9999</td>
</tr>
</tbody>
</table>

Hinweis!

Die hier festgelegte Anzahl der Dezimalstellen und der max. Wert der Mengenzähler wirken sich nur auf die Anzeige aus.

18.1.2 Erkennen langer Messausfälle

Wenn über ein langes Zeitintervall keine gültigen Messwerte gemessen werden, bleiben die Werte der Mengenzähler unverändert. Hinter diesem Wert erscheint dann ein Fragezeichen. Das Zeitintervall kann festgelegt werden.

18.1.3 Überlaufen der Mengenzähler

Das Verhalten der Mengenzähler bei Überlauf kann eingestellt werden:

Ohne Überlaufen

- Der Wert des Mengenzählers steigt bis zur internen Begrenzung von 10^{38}.
- Die Werte werden, falls erforderlich, in Exponentialschreibweise ($\pm 1.00000E10$) angezeigt. Der Mengenzähler kann nur manuell auf 0 (Null) zurückgesetzt werden.

Mit Überlaufen

Der Mengenzähler wird automatisch auf 0 (Null) zurückgesetzt, sobald ± 9999999999 erreicht ist.
18.1.4 Verhalten der Mengenzähler nach Stoppen der Messung
Das Verhalten der Mengenzähler nach dem Stoppen einer Messung oder nach einem Reset des Messumformers kann festgelegt werden.

Hinweis!
Das Überlaufen eines Mengenzählers wirkt sich auf alle Ausgabekanäle aus, z.B. auf den Messwertspeicher und die Online-Übertragung.
Die ausgegebene Summe beider Mengenzähler (Durchsatzmenge $\sum Q$) ist nach dem ersten Überlaufen eines der Mengenzähler nicht mehr gültig.

Sonderfunktionen\Mengenzähler\Mengen behalten

- Wählen Sie im Programmzweig **Sonderfunktionen** den Menüpunkt **Mengenzähler aus**.
- Drücken Sie ENTER, bis der Menüpunkt **Mengen behalten** angezeigt wird.
- Wählen Sie **Ja**, wenn die Werte der Mengenzähler gespeichert und für die nächste Messung verwendet werden sollen. Wählen Sie **Nein**, wenn die Mengenzähler auf 0 (Null) zurückgesetzt werden sollen.
- Drücken Sie ENTER.

18.1.5 Verhalten der Mengenzähler bei Wärmestrommessung
Während der Wärmestrommessung können die Werte des Wärmemengen- und Volumenzählers gespeichert und ausgegeben werden.

Sonderfunktionen\Mengenzähler\Mengz. Wärme+Strom

- Wählen Sie den Menüpunkt **Mengenzähler**.
- Drücken Sie ENTER, bis der Menüpunkt **Mengz. Wärme+Strom** angezeigt wird.
- Wählen Sie **Ja**, wenn während der Wärmemengenmessung die Werte des Wärmemengenzählers und des Volumenzählers gespeichert und ausgegeben werden sollen.
- Drücken Sie ENTER.

18.1.6 Summe der Mengenzähler
Die Summe der Mengenzähler beider Flussrichtungen kann während der Messung in der Statuszeile angezeigt werden.

Sonderfunktionen\Mengenzähler\ΣQ anzeigen

- Wählen Sie im Programmzweig **Sonderfunktionen** den Menüpunkt **Mengenzähler aus**.
- Drücken Sie ENTER, bis der Menüpunkt **ΣQ anzeigen** angezeigt wird.
- Wählen Sie **Ja**, wenn die Summe der Mengenzähler angezeigt werden soll. Wählen Sie **Nein**, wenn sie nicht angezeigt werden soll.
- Drücken Sie ENTER.

18.1.7 Speichern der Mengenzähler
Die Werte der Mengenzähler können gespeichert werden.

- Wählen Sie den Menüpunkt **Sonderfunktionen\Messwertspeicher\Konfiguration**.
- Drücken Sie ENTER, bis der Menüpunkt **Mengen speichern** angezeigt wird.
- Wählen Sie **Ja**.
- Drücken Sie ENTER.
18.2 FastFood-Modus

Der FastFood-Modus ermöglicht die Messung rasch veränderlicher Durchflüsse. Eine kontinuierliche Anpassung an wechselnde Messbedingungen wird im FastFood-Modus nur teilweise realisiert.

- Die Schallgeschwindigkeit des Fluids wird nicht aktualisiert. Es wird der zuletzt gemessene Wert der Schallgeschwindigkeit vor dem Umschalten in den FastFood-Modus verwendet.
- Die Messwerte werden mit der Ablagerate des FastFood-Modus gespeichert.
- Der FastFood-Modus muss freigegeben und aktiviert werden. Diese Funktion steht nicht zur Verfügung, wenn im Menüpunkt Sonderfunktionen\Messung\Messmodi\Synch. Mehrkanalmess. die synchrone Mehrkanalmessung aktiviert ist.

18.2.1 Freigeben/Sperren des FastFood-Modus

Sonderfunktionen\Messung\Messmodi\FastFood freigeben

- Wählen Sie den Menüpunkt Messmodi aus.
- Drücken Sie ENTER, bis der Menüpunkt FastFood freigeben angezeigt wird.
- Wählen Sie Ein, um den FastFood-Modus freizugeben. Wählen Sie Aus, um ihn zu sperren.
- Drücken Sie ENTER.

Wenn Sie Ein ausgewählt haben, erscheint der Menüpunkt Messrate FastFood. Die FastFood-Messrate gibt an, in welchem Intervall Messwerte an die Prozessausgänge übertragen werden.

- Wählen Sie Voreinstellung, wenn keine benutzerdefinierte Eingabe vorgenommen werden sollen (Voreinstellung: 50 ms).
- Wählen Sie Benutzerdefiniert, wenn ein Wert für die FastFood-Messrate eingegeben werden soll.
- Geben Sie einen Wert von 20...200 ms ein.
- Drücken Sie ENTER.

18.2.2 Ablagerate des FastFood-Modus

Die Ablagerate für den FastFood-Modus wird bei der Konfiguration des Messwertspeichers im Menüpunkt Ablagerate FastFood eingegeben.

Sonderfunktionen\Messwertspeicher\Konfiguration\Ablagerate FastFood

- Wählen Sie den Menüpunkt Konfiguration aus.
- Aktivieren Sie die Kanäle, deren Messdaten gespeichert werden sollen.
- Drücken Sie ENTER, bis der Menüpunkt Ablagerate FastFood angezeigt wird.
- Wählen Sie Automatisch, wenn die Ablagerate dem Wert der FastFood-Messrate entsprechen soll.
- Drücken Sie ENTER.
- Wählen Sie Benutzerdefiniert, wenn ein Wert für die Ablagerate festgelegt werden soll.
- Drücken Sie ENTER.
- Geben Sie einen Wert ein.
- Drücken Sie ENTER.

18.2.3 Aktivieren/Deaktivieren des FastFood-Modus

Wenn der FastFood-Modus freigegeben ist und eine Messung gestartet wurde, läuft zunächst der normale Messmodus.

- Drücken Sie Taste , um den FastFood-Modus zu deaktivieren.

Der FastFood-Modus kann auch über eine ferngesteuerte Funktion aktiviert/deaktiviert werden.
18.3 Verrechnungskanäle
Zusätzlich zu den Ultraschallmesskanälen hat der Messumformer 2 virtuelle Verrechnungskanäle Y und Z. Über diese können die Messwerte aller Messkanäle verrechnet werden.

18.3.1 Eigenschaften der Verrechnungskanäle
Im Programmzweig Parameter müssen die Messkanäle, die verrechnet werden sollen, sowie die Verrechnungsfunktion eingegeben werden.
Für jeden Verrechnungskanal können 2 Schleichmengen festgelegt werden. Die Schleichmenge basiert nicht wie bei den Messkanälen auf der Strömungsgeschwindigkeit. Sie wird stattdessen in der Maßeinheit der Messgröße festgelegt, die für den Verrechnungskanal ausgewählt wurde. Während der Messung werden die Verrechnungswerte mit den Schleichmengen verglichen und, falls erforderlich, auf 0 (Null) gesetzt.

18.3.2 Parametrieren eines Verrechnungskanals
• Wählen Sie im Programmzweig Parameter einen Verrechnungskanal (hier: Kanal Y).
• Drücken Sie ENTER.
Die aktuelle Verrechnungsfunktion wird angezeigt.
• Drücken Sie ENTER.

18.3.2.1 Auswahl der Verrechnungsart
• Wählen Sie eine Verrechnungsart.
• Drücken Sie ENTER.

Tab. 18.2: Verrechnungsarten

<table>
<thead>
<tr>
<th>Mittel (alle Kan. OK)</th>
<th>Mittel (1 Kanal OK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert mit "UND"</td>
<td>Mittelwert mit "ODER"</td>
</tr>
<tr>
<td>Alle Messkanäle müssen einen gültigen Messwert liefern.</td>
<td>Mindestens ein Messkanal muss einen gültigen Messwert liefern.</td>
</tr>
<tr>
<td>Verrechnungsfunktion:</td>
<td>Verrechnungsfunktion:</td>
</tr>
<tr>
<td>$Y = (A + B + C + D) / 4$</td>
<td>$Y = (A + B + C) / n$</td>
</tr>
</tbody>
</table>

• Wählen Sie eine Verrechnungsart.
• Drücken Sie ENTER.
18.3.2.2 Eingeben der Grenzwerte

Für jeden Verrechnungskanal können Grenzwerte für die Messgröße festgelegt werden. Sie werden in der Maßeinheit der Messgröße eingegeben, die für den Verrechnungskanal ausgewählt wurde.

Parameter\Kanal Y\Verrechnungsart\+Oberer Grenzwert

• Wählen Sie *Kein Grenzwert*, wenn der Verrechnungskanal alle positiven Werte ohne obere Begrenzung ausgeben soll.
• Drücken Sie ENTER.

• Wählen Sie *Grenzwert ausgeben*, wenn der Verrechnungskanal beim Überschreiten des oberen Grenzwerts den Grenzwert ausgeben soll.
• Drücken Sie ENTER.

• Wählen Sie *Fehler ausgeben*, wenn der Verrechnungskanal beim Überschreiten des oberen Grenzwerts einen Fehler (UNDEF) ausgeben soll.
• Drücken Sie ENTER.

Parameter\Kanal Y\Verrechnungsart\-Oberer Grenzwert

• Wählen Sie *Kein Grenzwert*, wenn der Verrechnungskanal alle negativen Werte ohne obere Begrenzung ausgeben soll.
• Drücken Sie ENTER.

• Wählen Sie *Grenzwert ausgeben*, wenn der Verrechnungskanal beim Unterschreiten des oberen Grenzwerts den Grenzwert ausgeben soll.
• Drücken Sie ENTER.

• Wählen Sie *Fehler ausgeben*, wenn der Verrechnungskanal beim Unterschreiten des oberen Grenzwerts einen Fehler (UNDEF) ausgeben soll.
• Drücken Sie ENTER.

Für jeden Verrechnungskanal können 2 Schleichmengen festgelegt werden. Sie werden in der Maßeinheit der Messgröße eingegeben, die für den Verrechnungskanal ausgewählt wurde.

Parameter\Kanal Y\Verrechnungsart\+Schleichmenge

• Geben Sie einen Wert für die positive Schleichmenge ein.
• Drücken Sie ENTER.

Alle positiven Verrechnungswerte, die kleiner als der Grenzwert sind, werden auf 0 (Null) gesetzt.

Parameter\Kanal Y\Verrechnungsart\-Schleichmenge

• Geben Sie einen Wert für die negative Schleichmenge als Absolutwert ein.
• Drücken Sie ENTER.

Alle negativen Verrechnungswerte (als Absolutwert), die kleiner als der Grenzwert sind, werden auf 0 (Null) gesetzt.

18.3.3 Ausgabeeoptionen für einen Verrechnungskanal

• Wählen Sie den Programmzweig *Optionen*.
• Drücken Sie ENTER.

Optionen\Kanal

• Wählen Sie den Verrechnungskanal, für den die Messgröße eingegeben werden soll.
• Drücken Sie ENTER.
• Wählen Sie *Messung*.
• Drücken Sie ENTER.
18.3.4 Messen mit Verrechnungskanälen

- Wählen Sie den Programmzweig Messung.
- Drücken Sie ENTER.

18.3.5 Erweiterte Diagnose

Auswahl des Verrechnungskanals

- Wählen Sie den Programmzweig Optionen.
- Drücken Sie ENTER.
- Wählen Sie den Verrechnungskanal (hier: Verrechnungskanal Y).
- Drücken Sie ENTER.
Zuordnen eines Ausgangs
• Wählen Sie Ausgänge.
• Drücken Sie ENTER.

Die Auswahlliste enthält alle im Messumformer verfügbaren Ausgänge.
Wenn der Ausgang bereits einem Kanal zugeordnet ist, wird das folgendermaßen angezeigt: Strom I1 (Y:).

Zuordnen einer Quellgröße
Jedem ausgewählten Ausgang muss eine Quellgröße zugeordnet werden.

Die Table 18.3: Quellgröße Erweiterte Diagnose

<table>
<thead>
<tr>
<th>Quellgröße</th>
<th>Listeneintrag</th>
<th>Ausgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erweiterte Diagnose</td>
<td>Gültige Kanäle</td>
<td>prozentualer Anteil der physikalischen Kanäle mit gültigem Messstatus</td>
</tr>
<tr>
<td></td>
<td>σ(Schalldauer)</td>
<td>Standardabweichung der Schallgeschwindigkeit</td>
</tr>
<tr>
<td></td>
<td>σ(Strömungsgeschw.)</td>
<td>Standardabweichung der Strömungsgeschwindigkeit</td>
</tr>
<tr>
<td></td>
<td>σ(Verstärkung)</td>
<td>Standardabweichung der Signalverstärkung</td>
</tr>
<tr>
<td></td>
<td>σ(Amplitude)</td>
<td>Standardabweichung der Signalamplitude</td>
</tr>
<tr>
<td></td>
<td>σ(Qualität)</td>
<td>Standardabweichung der Signalqualität</td>
</tr>
<tr>
<td></td>
<td>σ(SNR)</td>
<td>Standardabweichung SNR</td>
</tr>
<tr>
<td></td>
<td>σ(SCNR)</td>
<td>Standardabweichung SCNR</td>
</tr>
<tr>
<td></td>
<td>σ(VariAmp)</td>
<td>Standardabweichung der Amplitudenschwankung</td>
</tr>
<tr>
<td></td>
<td>σ(VariTime)</td>
<td>Standardabweichung der Laufzeitschwankung</td>
</tr>
</tbody>
</table>

Der Listeneintrag Gültige Kanäle erscheint nicht, wenn ein Binärausgang als Ausgang gewählt wurde.
Der Status einer Standardabweichung ist OK, wenn auf mindestens 2 Messkanälen ein Messwert zur Berechnung zur Verfügung steht.
18.4 Diagnose mit Hilfe der Snap-Funktion

18.4.1 Konfigurieren

Mit Hilfe der Snap-Funktion ist es möglich, Messparameter zu speichern, die bei der Auswertung von Messergebnissen oder für Diagnosezwecke hilfreich sein können. Um die Snap-Funktion zu nutzen, muss diese konfiguriert werden.

Optionen\Kanal Y\Ereignistrigger\Rx(-)

- Wählen Sie den Ereignistrigger. Wenn der Ereignistrigger bereits freigegeben ist, wird das folgendermaßen angezeigt: R1(+).
- Wählen Sie JA, um die Einstellungen für einen bereits zugeordneten Ereignistrigger zu ändern oder um einen neuen Ereignistrigger zuzuordnen.
- Wählen Sie NEIN, um die Zuordnung zu löschen und zum vorherigen Menüpunkt zurückzukehren.
- Drücken Sie ENTER.

Optionen\Kanal Y\Ereignistrigger\Rx freigeben

- Wählen Sie die Quellgröße Erweiterte Diagnose.
- Drücken Sie ENTER.
- Wählen Sie den Listeneintrag, für den eine Bedingung definiert werden soll.
- Drücken Sie ENTER.

18.4.1 Konfigurieren

Mit Hilfe der Snap-Funktion ist es möglich, Messparameter zu speichern, die bei der Auswertung von Messergebnissen oder für Diagnosezwecke hilfreich sein können. Um die Snap-Funktion zu nutzen, muss diese konfiguriert werden.

Optionen\Kanal Y\Ereignistrigger\Rx freigeben\Quellgröße

- Wählen Sie den Menüpunkt Konfiguration.
- Drücken Sie ENTER.

Optionen\Kanal Y\Ereignistrigger\Rx freigeben\Konfiguration

- Wählen Sie Ein, wenn die Snap-Funktion aktiviert werden soll.
- Drücken Sie ENTER.

Optionen\Kanal Y\Ereignistrigger\Rx freigeben\Konfiguration\Snap

- Wählen Sie Ja, wenn der Snap-Ringbuffer aktiviert werden soll.
- Wenn der Snap-Ringbuffer aktiviert ist, werden ab dem 51. Snap die jeweils ältesten Snaps überschrieben. Wenn der Snap-Ringbuffer deaktiviert ist, können maximal 50 Snaps gespeichert werden.
- Drücken Sie ENTER.
18 Erweiterte Funktionen
18.5 Ändern des Grenzwerts für den Rohrinnendurchmesser

18.4.2 Snap erstellen

- Halten Sie während der Messung die Taste C gedrückt, bis der Menüpunkt **Befehl ausführen** erscheint.
- Wählen Sie den Listeneintrag **Snap erstellen**.
- Drücken Sie ENTER.

Ein Snap wird erstellt.

18.4.3 Informationen zu Snaps

- Wählen Sie den Menüpunkt **Snap-Info**.
- Drücken Sie ENTER.

Folgende Informationen werden angezeigt:

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snaps gespeich.:</td>
<td>Anzahl der gespeicherten Snaps</td>
</tr>
<tr>
<td>Snaps frei:</td>
<td>Anzahl der Snaps, die noch gespeichert werden können</td>
</tr>
<tr>
<td>Ringbuffer:</td>
<td>Snap-Ringbuffer aktiviert</td>
</tr>
</tbody>
</table>

18.4.4 Löschen der Snaps

- Wählen Sie den Menüpunkt **Snaps löschen**.
- Drücken Sie ENTER.
- Wählen Sie **Ja** oder **Nein**.
- Drücken Sie ENTER.

18.5 Ändern des Grenzwerts für den Rohrinnendurchmesser

Es ist möglich, den unteren Grenzwert des Rohrinnendurchmessers für einen gegebenen Sensortyp zu ändern.
- Wählen Sie den Programmzweig **Sonderfunktionen**.
- Drücken Sie ENTER.

- Wählen Sie **Rohrdurchm. MIN**.
- Drücken Sie ENTER.
Es ist möglich, einen min. Rohrdurchmesser für alle relevanten Sensorfrequenzen festzulegen.
• Wählen Sie **Voreinstellung**, wenn keine benutzerdefinierten Eingaben vorgenommen und die voreingestellten Werte verwendet werden sollen.
• Drücken Sie ENTER.
• Wählen Sie **Benutzerdefiniert**, wenn ein min. Rohrdurchmesser festgelegt werden soll.
• Drücken Sie ENTER.
• Geben Sie den Rohrdurchmesser in mm an.
• Drücken Sie ENTER.

Hinweis!
Bei Einsatz eines Sensors unterhalb seines empfohlenen Rohrinnendurchmessers kann sich eine Messung als unmöglich erweisen.

18.6 Ferngesteuerte Funktionen

Ferngesteuerte Funktionen können über triggerbare Analogeingänge oder Ereignistrigger ausgelöst werden. Um einen Eingang für eine ferngesteuerte Funktion zu definieren, muss dieser im Menüpunkt **Sonderfunktionen\Eingänge** freigegeben werden. Um einen Ereignistrigger für eine ferngesteuerte Funktion zu definieren, muss dieser im Menüpunkt **Optionen\Kanal x\Ereignistrigger** freigegeben werden. Es können eine oder mehrere der folgenden ferngesteuerten Funktionen für mehrere Kanäle ausgelöst werden:
• Messwerte zurücksetzen
• Mengenzähler zurücksetzen
• Mengenzähler stoppen
• FastFood-Modus aktivieren
• Nicht verrechnen

Triggerbare Eingänge und Ereignistrigger
Die ferngesteuerte Funktion wird ausgelöst, wenn die Schaltbedingung erfüllt ist. Die ferngesteuerte Funktion wird zurückgesetzt, wenn die Schaltbedingung nicht mehr erfüllt ist.

18.6.1 Einrichten der ferngesteuerten Funktion
Die ferngesteuerte Funktion kann für jeden Kanal einzeln eingerichtet werden.

1. Wählen Sie im Programmzweig **Optionen** einen Messkanal aus, für den eine ferngesteuerte Funktion aktiviert werden soll.
2. Drücken Sie ENTER.
3. Wählen Sie den Menüpunkt **Ferngest. Funktionen**.
4. Drücken Sie ENTER.
In der Auswahlliste der Funktionen wird angezeigt, ob, und wenn ja, mit welchem Eingang oder Ereignistrigger eine Funktion belegt ist.

- Wählen Sie einen Listeneintrag:
 - Messw. zurück. (-)
 - Mengenz. zurück. (-)
 - Mengenz. stopp. (-)
 - FastF aktivieren (-)
 - Nicht verrech. (-)

Wenn dieser Funktion bereits ein Eingang oder Ereignistrigger zugeordnet ist, wird dies folgendermaßen angezeigt:
Messw. zurück. (R1).

- Drücken Sie Taste [→], um zum vorherigen Menüpunkt zurückzukehren.

Zurücksetzen der Messwerte

- Wählen Sie den Listeneintrag Messw. zurück..
- Drücken Sie ENTER.

Die Messwertausgabe simuliert für die Dauer des Signals eine ruhende Applikation. Die tatsächlich gemessene Strömungsgeschwindigkeit wird ignoriert und der Messwert auf 0 (Null) gesetzt. Alle Werte der von der Strömungsgeschwindigkeit abgeleiteten Messgrößen und Werte der Verrechnungskanäle ergeben damit auch 0 (Null).

Der Messumformer setzt die Messung fort, wenn die Bedingung für die ferngesteuerte Funktion nicht mehr erfüllt ist.

- Wählen Sie den Eingang, über den die ferngesteuerte Funktion ausgelöst werden soll.
- Drücken Sie ENTER.
- Um die ferngesteuerte Funktion zu deaktivieren, wählen Sie Keine Zuordnung.
- Drücken Sie ENTER.

Zurücksetzen der Mengenzähler

- Wählen Sie den Listeneintrag Mengenz. zurück..
- Drücken Sie ENTER.

Die Mengenzählerwerte werden auf 0 (Null) gesetzt. Die Mengenzähler werden für die Dauer des Signals deaktiviert.

Die Mengenzählung beginnt erneut bei 0 (Null), wenn die Bedingung für die ferngesteuerte Funktion nicht mehr erfüllt ist. Wenn die Mengenzähler mit der ferngesteuerten Funktion auf 0 (Null) gesetzt werden, wird während der Messung neben dem Messwert ein H angezeigt.

- Wählen Sie den Eingang, über den die ferngesteuerte Funktion ausgelöst werden soll.
- Drücken Sie ENTER.
- Um die ferngesteuerte Funktion zu deaktivieren, wählen Sie Keine Zuordnung.
- Drücken Sie ENTER.

Stoppen der Mengenzähler

- Wählen Sie den Listeneintrag Mengenz. stopp..
- Drücken Sie ENTER.

Die Mengenzähler werden für die Dauer des Signals gestoppt.

Die Mengenzählung wird bei dem zuletzt erfassten Mengenzählerwert fortgesetzt, wenn die Bedingung für die ferngesteuerte Funktion nicht mehr erfüllt ist.

- Wählen Sie den Eingang, über den die ferngesteuerte Funktion ausgelöst werden soll.
- Drücken Sie ENTER.
- Um die ferngesteuerte Funktion zu deaktivieren, wählen Sie Keine Zuordnung.
- Drücken Sie ENTER.
Aktivieren des FastFood-Modus
- Wählen Sie den Listeneintrag FastF aktivieren.
- Drücken Sie ENTER.
Der FastFood-Modus wird für die Dauer des Signals aktiviert. Er wird deaktiviert, wenn die Bedingung für die ferngesteuerte Funktion nicht mehr erfüllt ist.
Dieser Listeneintrag ist nur für Messkanäle verfügbar und erscheint nur, wenn der FastFood-Modus im Menüpunkt Sonderfunktionen\Messung\Messmodi\FastFood freigegeben ist.
- Wählen Sie den Eingang, über den die ferngesteuerte Funktion ausgelöst werden soll.
- Drücken Sie ENTER.
- Um die ferngesteuerte Funktion zu deaktivieren, wählen Sie Keine Zuordnung.
- Drücken Sie ENTER.

Nicht verrechnen
Mit dieser Funktion kann eine ereignisbasierte Kanalauswahl für Verrechnungskanäle definiert werden.
- Wählen Sie den Listeneintrag Nicht verrech..
- Drücken Sie ENTER.
Wenn die Bedingung für die ferngesteuerte Funktion erfüllt ist, wird dieser Messkanal auf dem Verrechnungskanal nicht verrechnet. Die Messung auf dem Messkanal läuft weiter. Die Quelle dieser ferngesteuerten Funktion kann ein Ereignistrigger oder ein Prozesseingang sein.
Der Messkanal ist wieder für den Verrechnungskanal verfügbar, wenn die Bedingung für die ferngesteuerte Funktion nicht mehr erfüllt ist.
- Wählen Sie den Eingang, über den die ferngesteuerte Funktion ausgelöst werden soll.
- Drücken Sie ENTER.
- Um die ferngesteuerte Funktion zu deaktivieren, wählen Sie Keine Zuordnung.
- Drücken Sie ENTER.

18.7 Ereignistrigger

Es können max. 4 voneinander unabhängige Ereignistrigger R1, R2, R3, R4 pro Kanal aktiviert werden. Ereignistrigger können z.B. verwendet werden, um:
– Informationen über die laufende Messung auszugeben
– spezielle ferngesteuerte Funktionen auszulösen
– Pumpen oder Motoren ein- und auszuschalten
- Wählen Sie den Programmzweig Optionen.
- Drücken Sie ENTER.

Optionen\Kanal x\Ereignistrigger\Rx(-)
- Wählen Sie den Ereignistrigger.
Wenn der Ereignistrigger bereits installiert ist, wird das folgendermaßen angezeigt: Rx(+).

Optionen\Kanal x\Ereignistrigger\Rx freigeben
- Wählen Sie Ja, um die Einstellungen für einen bereits zugeordneten Ereignistrigger zu ändern oder um einen neuen Ereignistrigger zuzuordnen.
- Wählen Sie Nein, um die Zuordnung zu löschen und zum vorherigen Menüpunkt zurückzukehren.
- Drücken Sie ENTER.
Optionen\Kanal x\Ereignistrigger\Rx freigeben\Quellgröße

- Wählen Sie die Quellgröße (Messgröße), für die eine Bedingung definiert werden soll.

Tab. 18.4: Quellgrößen

<table>
<thead>
<tr>
<th>Quellgröße</th>
<th>Listeneintrag</th>
<th>Ausgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchflussgrößen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strömungsgeschw.</td>
<td>Strömungsgeschwindigkeit</td>
</tr>
<tr>
<td></td>
<td>Volumenstrom</td>
<td>Volumenstrom</td>
</tr>
<tr>
<td></td>
<td>Massenstrom</td>
<td>Massenstrom</td>
</tr>
<tr>
<td></td>
<td>Wärmestrom</td>
<td>Wärmestrom</td>
</tr>
<tr>
<td>Mengenzähler</td>
<td>Volumen (+)</td>
<td>Mengenzähler für den Volumenstrom in positiver Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Volumen (-)</td>
<td>Mengenzähler für den Volumenstrom in negativer Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Volumen (Δ)</td>
<td>Differenz der Mengenzähler für die positive und negative Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Masse (+)</td>
<td>Mengenzähler für den Massenstrom in positiver Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Masse (-)</td>
<td>Mengenzähler für den Massenstrom in negativer Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Masse (Δ)</td>
<td>Differenz der Mengenzähler für die positive und negative Flussrichtung</td>
</tr>
<tr>
<td></td>
<td>Wärmemenge (+)</td>
<td>Wärmemengenzähler für positive Messwerte des Wärmestroms</td>
</tr>
<tr>
<td></td>
<td>Wärmemenge (-)</td>
<td>Wärmemengenzähler für negative Messwerte des Wärmestroms</td>
</tr>
<tr>
<td></td>
<td>Wärmemenge (Δ)</td>
<td>Differenz der Wärmemengenzähler</td>
</tr>
<tr>
<td>Fluideigenschaften</td>
<td>Fluidtemp.</td>
<td>Fluidtemperatur</td>
</tr>
<tr>
<td></td>
<td>Vorlauftemperatur</td>
<td>Vorlauftemperatur (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Rücklauftemperatur</td>
<td>Rücklauftemperatur (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Temperatur (Δ)</td>
<td>Differenz Vorlauf-/Rücklauftemperatur (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Fluiddruck</td>
<td>Fluiddruck</td>
</tr>
<tr>
<td></td>
<td>Vorlaufdruck</td>
<td>Vorlaufdruck (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Rücklaufdruck</td>
<td>Rücklaufdruck (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Druck (Δ)</td>
<td>Differenz Vorlauf-/Rücklaufdruck (bei Wärmestrommessung)</td>
</tr>
<tr>
<td></td>
<td>Fluiddichte</td>
<td>Fluiddichte</td>
</tr>
<tr>
<td></td>
<td>Kin. Viskosität</td>
<td>kinematische Viskosität</td>
</tr>
<tr>
<td></td>
<td>Dyn. Viskosität</td>
<td>dynamische Viskosität</td>
</tr>
<tr>
<td>Diagnosewerte</td>
<td>Amplitude</td>
<td>Signalamplitude</td>
</tr>
<tr>
<td></td>
<td>Qualität</td>
<td>Signalqualität</td>
</tr>
<tr>
<td></td>
<td>SNR</td>
<td>Verhältnis Nutzsignal/Störsignal</td>
</tr>
<tr>
<td></td>
<td>SCNR</td>
<td>Verhältnis Nutzsignal/korreliertes Störsignal</td>
</tr>
<tr>
<td></td>
<td>VariAmp</td>
<td>Amplitudenschwankung</td>
</tr>
<tr>
<td></td>
<td>VariTime</td>
<td>Laufzeitschwankung</td>
</tr>
<tr>
<td></td>
<td>Verstärkung</td>
<td>Signalverstärkung, die notwendig ist, um ein verwendbares Signal zu empfangen</td>
</tr>
<tr>
<td></td>
<td>Molch-Erkennung</td>
<td>signalisiert, ob ein Molch erkannt wurde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diese Anzeige erscheint nur, wenn Molch-Erkennung aktiviert ist.</td>
</tr>
</tbody>
</table>
Anschließend werden die Eigenschaften des Ereignistriggers definiert.

Tab. 18.5: Eigenschaften des Ereignistriggers

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Einstellung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion</td>
<td>MAX (x>Grenzwert)</td>
<td>Der Ereignistrigger schaltet, wenn der Messwert den oberen Grenzwert überschreitet.</td>
</tr>
<tr>
<td></td>
<td>MIN (x<Grenzwert)</td>
<td>Der Ereignistrigger schaltet, wenn der Messwert den unteren Grenzwert unterschreitet.</td>
</tr>
<tr>
<td></td>
<td>ERR (x=Ausfall)</td>
<td>Der Ereignistrigger schaltet, wenn eine Messung nicht möglich ist.</td>
</tr>
<tr>
<td></td>
<td>Im Bereich</td>
<td>Der Ereignistrigger schaltet, wenn der Messwert innerhalb des festgelegten Bereichs liegt.</td>
</tr>
<tr>
<td></td>
<td>Außerh. Bereich</td>
<td>Der Ereignistrigger schaltet, wenn der Messwert außerhalb des festgelegten Bereichs liegt.</td>
</tr>
<tr>
<td>Typ (Rückstellverhalten)</td>
<td>Nicht haltend</td>
<td>Wenn die Schaltbedingung nicht mehr erfüllt ist, schaltet der Ereignistrigger nach ca. 1 s in den Ruhezustand zurück.</td>
</tr>
<tr>
<td></td>
<td>Haltend</td>
<td>Der Ereignistrigger bleibt aktiviert, auch wenn die Schaltbedingung nicht mehr erfüllt ist.</td>
</tr>
<tr>
<td></td>
<td>Kurzzeitig haltend</td>
<td>Der Ereignistrigger bleibt für eine festgelegte Zeit aktiviert, auch wenn die Schaltbedingung nicht mehr erfüllt ist.</td>
</tr>
</tbody>
</table>

Festlegen der Schaltbedingung

1. Wählen Sie die Schaltbedingung.
2. Drücken Sie ENTER.

Festlegen des Rückstellverhaltens

1. Wählen Sie den Typ des Rückstellverhaltens.
2. Drücken Sie ENTER.
Festlegen der Triggergrenzen

Es müssen Grenzwerte eingegeben werden, bei denen der Ereignistrigger schalten soll.
• Geben Sie den oberen Grenzwert MAX \((x \geq \text{Grenzwert})\) ein.
• Drücken Sie ENTER.
• Geben Sie den unteren Grenzwert MIN \((x < \text{Grenzwert})\) ein.
• Drücken Sie ENTER.

Um ein ständiges Schalten des Ereignistriggers zu vermeiden, kann eine Hysterese festgelegt werden.
Der Ereignistrigger wird aktiviert, wenn die Messwerte den oberen Grenzwert überschreiten. Er wird deaktiviert, wenn die Messwerte den unteren Grenzwert unterschreiten.
• Geben Sie einen Wert für die Hysterese ein.
• Drücken Sie ENTER.
• Geben Sie den Wert für die Mitte des Bereichs ein, in dem der Ereignistrigger geschaltet werden soll.
• Drücken Sie ENTER.
• Geben Sie den Wert für die Breite des Bereichs ein, in dem der Ereignistrigger geschaltet werden soll.
• Drücken Sie ENTER.

Beispiel

MAX \((x \geq \text{Grenzwert})\): 30 m³/h
Hysterese: 1 m³/h
Der Ereignistrigger wird bei Messwerten > 30,5 m³/h aktiviert und bei Messwerten < 29,5 m³/h wieder deaktiviert.

Festlegen der Schaltverzögerung

• Geben Sie ein Zeitintervall ein, nach dessen Ablauf der Ereignistrigger schalten soll, wenn das Ereignis eingetreten ist.
• Drücken Sie ENTER.
• Geben Sie ein Zeitintervall ein, nach dessen Ablauf bei Ausfall der Messung der Ereignistrigger deaktiviert wird.
• Drücken Sie ENTER.
18.7.1 Scheinbare Schaltverzögerung

18.7.2 Zurücksetzen und Initialisieren der Ereignistrigger

Nach einer Initialisierung des Messumformers werden alle Ereignistrigger deaktiviert.

• Drücken Sie während der Messung 3 × Taste C, um alle Ereignistrigger in den Ruhezustand zurückzusetzen.

Ereignistrigger, deren Schaltbedingung noch erfüllt ist, werden nach 1 s wieder aktiviert. Diese Funktion wird verwendet, um Ereignistrigger vom Typ HALTEND zurückzusetzen, wenn die Schaltbedingung nicht mehr erfüllt ist. Wenn eine Messung gestoppt wird, werden alle Ereignistrigger deaktiviert und die dazugehörigen Prozessausgänge stromlos geschaltet, unabhängig vom programmierten Ruhezustand.

18.7.3 Ereignistrigger während der Messung

Ein Ereignistrigger mit der Schaltbedingung MAX (x>Grenzwert), MIN (x<Grenzwert), Im Bereich oder Außerh. Bereich wird max. einmal pro Sekunde aktualisiert, um ein ständiges Schalten des Ereignistriggers (beim Schwanken der Messwerte um den Wert der Schaltbedingung) zu vermeiden.

Ein Ereignistrigger mit der Schaltbedingung ERR (x=Ausfall) wird bei Messausfall aktiviert.

Ein Ereignistrigger vom Typ Nicht haltend wird aktiviert, wenn die Schaltbedingung erfüllt ist. Er wird deaktiviert, wenn die Schaltbedingung nicht mehr erfüllt ist. Er bleibt aber min. 1 s aktiviert, auch wenn die Schaltbedingung kürzer erfüllt ist.

Ein Ereignistrigger vom Typ Haltend wird aktiviert, wenn die Schaltbedingung erfüllt ist. Er bleibt aktiviert, auch wenn die Schaltbedingung nicht mehr erfüllt ist.

Ein Ereignistrigger vom Typ Kurzzeitig haltend wird aktiviert, wenn die Schaltbedingung erfüllt ist. Im Menüpunkt Halte-Intervall wird die Zeit festgelegt, nach der das Deaktivieren erfolgt.

18.7.4 Zustandsanzeige der Ereignistrigger

Hinweis!

Das Schalten der Ereignistrigger wird weder akustisch noch auf der Anzeige signalisiert.

Der Zustand der Ereignistrigger wird während der Messung angezeigt.

• Scrollen Sie mit Taste

Die Zustandsanzeige der Ereignistrigger ist folgendermaßen aufgebaut:

\[R_x = \text{Piktogramm} \]

wobei \(R_x \) die Nummer des Ereignistriggers und ein Piktogramm nach Tab. 18.6 ist.

Tab. 18.6: Piktogramme für die Zustandsanzeige der Ereignistrigger

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Funktion (Schaltbedingung)</th>
<th>Typ (Rückstellverhalten)</th>
<th>aktueller Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>(R_x=\text{Piktogramm})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MAX (x>Grenzwert)</td>
<td>Nicht haltend</td>
<td>deaktiviert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Zustand falsch)</td>
</tr>
<tr>
<td>2</td>
<td>MIN (x<Grenzwert)</td>
<td>Haltend</td>
<td>aktiviert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Zustand wahr)</td>
</tr>
<tr>
<td>3</td>
<td>Im Bereich</td>
<td>Kurzzeitig haltend</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Außerh. Bereich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ERR (x=Ausfall)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
18.8 Ereignisprotokoll
Wenn ein Fehler auftritt, wird durch das Symbol ☢ in der ersten Zeile eine Fehlermeldung signalisiert. Die Fehlermeldung kann über den Menüpunkt Ereignisprotokoll angezeigt werden.

Sonderfunktionen\Systemeinstellungen\Ereignisprotokoll

- Wählen Sie den Menüpunkt Ereignisprotokoll.
- Drücken Sie ENTER.
Es wird eine Liste aller Fehlermeldungen seit dem letzten Einschalten des Messumformers angezeigt.
- Wählen Sie durch Scrollen mit den Tasten ⇧ und ⇨ eine Fehlermeldung aus.
- Drücken Sie ENTER.
Auf dem Display wird die Fehlerursache angezeigt.

Hinweis!
Nach dem Auslesen des Ereignisprotokolls wird das Symbol für Fehlermeldung auf dem Display gelöscht, auch wenn der Fehler noch nicht behoben ist.
Das Ereignisprotokoll wird nach einem Neustart des Messumformers gelöscht.
19 Einstellungen
19.1 Dialoge und Menüs

Sonderfunktionen\Dialoge/Menüs

- Wählen Sie im Programmzweig Sonderfunktionen den Menüpunkt Dialoge/Menüs aus.
- Drücken Sie ENTER.

Rohrumfang

Sonderfunktionen\Dialoge/Menüs\Rohrumfang

- Wählen Sie den Menüpunkt Rohrumfang aus.
- Wählen Sie Ja, wenn im Programmzweig Parameter der Rohrumfang anstelle des Rohrdurchmessers eingegeben werden soll.
- Drücken Sie ENTER.

Wenn Ja für Rohrumfang ausgewählt wurde, wird im Programmzweig Parameter trotzdem nach dem Rohraußendurchmesser gefragt.
- Um den Menüpunkt Rohrumfang auszuwählen, drücken Sie Taste .
- Drücken Sie ENTER.

Der Wert im Menüpunkt Rohrumfang wird aus dem zuletzt angezeigten Rohraußendurchmesser berechnet.
Beispiel: 100 mm · π = 314.2 mm
- Drücken Sie ENTER.

Beim nächsten Abarbeiten des Programmzweigs Parameter wird der Rohraußendurchmesser angezeigt, der sich aus dem zuletzt eingegebenen Rohrumfang ergibt.
Beispiel: 180 mm : π = 57.3 mm

Ummantelung
Wenn das Rohr eine Ummantelung hat, müssen im Programmzweig Parameter die Materialparameter der Ummantelung eingegeben werden.

Sonderfunktionen\Dialoge/Menüs\Ummant. editierbar

- Drücken Sie ENTER, bis der Menüpunkt Ummant. editierbar angezeigt wird.
- Wählen Sie Ja, wenn das Rohr eine Ummantelung hat.
- Drücken Sie ENTER.

Auskleidung 2
Wenn das Rohr eine zweite Auskleidung hat, müssen im Programmzweig Parameter die Materialparameter der zweiten Auskleidung eingegeben werden.

Sonderfunktionen\Dialoge/Menüs\Auskleid. 2 editierbar

- Drücken Sie ENTER, bis der Menüpunkt Auskleid. 2 editierbar angezeigt wird.
- Wählen Sie Ja, wenn das Rohr 2 Auskleidungen hat.
- Drücken Sie ENTER.
Messstellennummer

- Drücken Sie ENTER, bis der Menüpunkt Messstellennummer angezeigt wird.
- Wählen Sie Zahl, wenn die Messstelle nur durch Ziffern bezeichnet werden soll. Wählen Sie Text, wenn die Messstelle nur durch Buchstaben bezeichnet werden soll.
- Drücken Sie ENTER.

Fehlerverzögerung

Die Fehlerverzögerung ist die Zeit, nach deren Ablauf ein Fehlerwert an einen Ausgang gesendet wird, wenn keine gültigen Messwerte verfügbar sind.

- Drücken Sie ENTER, bis der Menüpunkt Fehlerverzögerung angezeigt wird.
- Wählen Sie Editieren, um eine Fehlerverzögerung einzugeben. Wählen Sie Dämpfung, wenn die Dämpfungszahl als Fehlerverzögerung verwendet werden soll.
- Drücken Sie ENTER.

Temperaturkorrektur

- Drücken Sie ENTER, bis der Menüpunkt Tx Temperatur-Offset angezeigt wird.
- Wählen Sie Ja, um die Eingabe einer Temperaturkorrektur für jeden Temperatureingang freizugeben.
- Drücken Sie ENTER.

Sensorabstand

- Drücken Sie ENTER, bis der Menüpunkt Sensorabstand angezeigt wird.
- Wählen Sie Benutzerdefiniert, wenn immer an derselben Messstelle gearbeitet wird. Wählen Sie Automatisch, wenn die Messstelle häufig gewechselt wird.
- Drücken Sie ENTER.

Im Programmzweig Messung wird der empfohlene Sensorabstand in Klammern angezeigt, darunter der eingegebene Sensorabstand.

Schallgeschwindigkeit des Referenzfluids

- Drücken Sie ENTER, bis der Menüpunkt c Fluid vergleichen angezeigt wird.
- Wählen Sie Ja, wenn die Differenz $\Delta c = c_{\text{meas}} - c_{\text{ref}}$ zwischen den beiden Schallgeschwindigkeiten während der Messung angezeigt werden soll. c_{ref} ist die berechnete Schallgeschwindigkeit des Fluids bei gleichen Prozessbedingungen (z.B. Temperatur, Druck).
- Drücken Sie ENTER.

c Fluid vergleichen kann auch während der Messung aktiviert/deaktiviert werden und wirkt sofort auf die Anzeige der Messwerte.

- Scrollen Sie während der Messung mit Taste 3 zur Anzeige von Δc.
Letzten Wert anzeigen

Sonderfunktionen\Dialoge/Menüs\Letzten Wert anzeig.

• Drücken Sie ENTER, bis der Menüpunkt Letzten Wert anzeig. angezeigt wird.
• Wählen Sie Ja, um den letzten gültigen Messwert anzuzeigen.
• Drücken Sie ENTER.
Wenn Ja ausgewählt wurde und während der Messung auf einem Kanal kein gültiger Messwert ausgegeben werden kann, wird auf diesem Kanal der letzte gültige Wert angezeigt. Hinter diesem Wert erscheint dann ein Fragezeichen.

Umschaltzeit
Die Umschaltzeit gibt das Zeitintervall an, nach dem der Messumformer während der Messung zwischen den einzelnen Kanälen umschaltet. Der voreingestellte Wert beträgt 3 s.

Sonderfunktionen\Dialoge/Menüs\Umschaltzeit

• Drücken Sie ENTER, bis der Menüpunkt Umschaltzeit angezeigt wird.
• Wenn Sie nicht mit dem voreingestellten Wert arbeiten möchten, geben Sie einen anderen Wert für die Umschaltzeit ein.
• Drücken Sie ENTER.
Dieser Wert bleibt gespeichert, bis eine neue Umschaltzeit eingegeben wird.

Primärer Anzeigewert

Sonderfunktionen\Dialoge/Menüs\Primärer Anzeigewert

• Drücken Sie ENTER, bis der Menüpunkt Primärer Anzeigewert angezeigt wird.
• Wählen Sie Durchflussgröße, wenn während der Messung der Wert der ausgewählten Messgröße als primärer Anzeigewert im Display angezeigt werden soll. Wählen Sie Mengenzähler, wenn während der Messung der Wert des Mengenzählers als primärer Anzeigewert im Display angezeigt werden soll.
• Drücken Sie ENTER.

Ausschalten der Hintergrundbeleuchtung

Sonderfunktionen\Dialoge/Menüs\Licht automatisch aus

• Drücken Sie ENTER, bis der Menüpunkt Licht automatisch aus angezeigt wird.
• Wählen Sie Ja, wenn Sie die automatische Abschaltung der Hintergrundbeleuchtung aktivieren wollen.
• Drücken Sie ENTER.
Wenn die automatische Abschaltung der Hintergrundbeleuchtung aktiviert wurde, wird die Hintergrundbeleuchtung nach 30 s ausgeschaltet. Wenn eine Taste gedrückt oder das USB-Kabel angeschlossen wird, wird die Hintergrundbeleuchtung wieder eingeschaltet.
19.2 Messmodi

- Wählen Sie im Programmzweig **Sonderfunktionen** den Menüpunkt **Messung aus**.
- Drücken Sie ENTER.
- Wählen Sie den Menüpunkt **Messmodi aus**.
- Drücken Sie ENTER.

Synchroner Mehrkanalmessmodus

- Wählen Sie **Ein**, um die synchronen Mehrkanalmessung zu aktivieren. Wählen Sie **Aus**, um sie zu deaktivieren.
- Drücken Sie ENTER.

FastFood-Modus

- Wählen Sie **Ein**, um den FastFood-Modus freizugeben. Wählen Sie **Aus**, um ihn zu sperren.
- Drücken Sie ENTER.

Diese Anzeige erscheint nicht, wenn die synchronen Mehrkanalmessung aktiviert ist.

19.3 Messeinstellungen

- Wählen Sie im Programmzweig **Sonderfunktionen** den Menüpunkt **Messung aus**.
- Drücken Sie ENTER.
- Wählen Sie den Menüpunkt **Messeinstellungen aus**.
- Drücken Sie ENTER.

Mehrpunkt-Kalibrierung

Durch Mehrpunkt-Kalibrierung ist es möglich, sehr genaue Messergebnisse auszugeben. Grundlage für die Mehrpunkt-Kalibrierung sind Kalibrierkurven von Messwertreihen.

- Wählen Sie den Menüpunkt **Mehrpunkt-Kalibrierung**.
- Wählen Sie **Ein**, wenn die Mehrpunkt-Kalibrierung aktiviert werden soll. Wählen Sie **Aus**, wenn sie deaktiviert werden soll (Voreinstellung: **Aus**).
- Drücken Sie ENTER.

Wenn Sie **Ein** ausgewählt haben, muss im Programmzweig **Optionen** eine Messwertreihe eingegeben werden.

Schnelle Dämpfung

Wenn **Schnelle Dämpfung** aktiviert ist, ist jeder angezeigte Messwert ein Mittelwert über die letzten x Sekunden, wobei x die Dämpfungszahl ist. Die Anzeige benötigt daher x Sekunden, um vollständig auf eine Änderung des Durchflusses zu reagieren.

Wenn **Schnelle Dämpfung** deaktiviert ist, wird die Dämpfung als Tiefpass erster Ordnung berechnet, d.h. Messwertänderungen werden in Form eines exponentiellen Zeitverlaufs im Messergebnis wirksam.
Dynamische Dämpfung
Wenn die dynamische Dämpfung aktiviert ist, werden sprunghafte Messwertänderungen der ausgewählten Messgröße verzögerungsfrei durch den Messumformer übertragen.

<table>
<thead>
<tr>
<th>Wichtig!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die dynamische Dämpfung wirkt sich nur auf die ausgewählte Messgröße aus. Alle anderen Messgrößen werden nicht dynamisch gedämpft.</td>
</tr>
</tbody>
</table>

Wählen Sie den Menüpunkt Dyn. Dämpfung aus.
Wählen Sie Ein, um die dynamische Dämpfung zu aktivieren. Wählen Sie Aus, um sie zu deaktivieren (Voreinstellung: Aus).
Drücken Sie ENTER.
Wenn Sie Ein ausgewählt haben, muss die dynamische Dämpfung im Menüpunkt Optionen\Kanal A\Messung\Dyn. Dämpfung parametriert werden.

19.4 Maßeinheiten
Für Länge, Temperatur, Druck, Schallgeschwindigkeit, Dichte und kinematische Viskosität können die globalen Maßeinheiten im Messumformer eingestellt werden.

<table>
<thead>
<tr>
<th>Sonderfunktionen\Maßeinheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wählen Sie den Menüpunkt Maßeinheiten aus.</td>
</tr>
<tr>
<td>• Drücken Sie ENTER.</td>
</tr>
<tr>
<td>• Wählen Sie für alle Größen eine Maßeinheit aus.</td>
</tr>
<tr>
<td>• Drücken Sie ENTER.</td>
</tr>
</tbody>
</table>

In diesem Menüpunkt kann festgelegt werden, welcher Barreltyp als Maßeinheit für den Volumenstrom angezeigt werden soll.
• Wählen Sie einen Barreltyp aus.
• Drücken Sie ENTER.

<table>
<thead>
<tr>
<th>Sonderfunktionen\Maßeinheiten\Barreltyp</th>
</tr>
</thead>
</table>

19.5 Material- und Fluidauswahl
Bei Auslieferung werden alle im Messumformer gespeicherten Materialien und Fluide in Auswahllisten im Menüpunkt Parameter\Rohrmaterial oder Parameter\Fluid angezeigt.

Ein Material/Fluid hinzufügen oder entfernen
• Wählen Sie den Menüpunkt Sonderfunktionen\Bibliotheken\Mat.-liste verwenden aus.
• Drücken Sie ENTER.

<table>
<thead>
<tr>
<th>Sonderfunktionen\Bibliotheken\Mat.-liste verwenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wählen Sie Ja, wenn ein Material zur Materialauswahl hinzugefügt oder aus dieser entfernt werden soll.</td>
</tr>
<tr>
<td>• Drücken Sie ENTER.</td>
</tr>
<tr>
<td>• Scrollen Sie in der Auswahlliste mit der Taste [8] oder [9].</td>
</tr>
<tr>
<td>• Drücken Sie Taste [1], um ein Material hinzuzufügen (+), oder Taste [4], um ein Material zu entfernen (-).</td>
</tr>
<tr>
<td>• Drücken Sie ENTER.</td>
</tr>
</tbody>
</table>

Die Fluidauswahl kann analog dazu angepasst werden (Sonderfunktionen\Bibliotheken\Fluidliste verwenden).
Alle Materialien/Fluide hinzufügen
• Wählen Sie den Menüpunkt Sonderfunktionen\Bibliotheken\Mat.-liste verwenden aus.
• Drücken Sie ENTER.

Sonderfunktionen\Bibliotheken\Mat.-liste verwenden

• Wählen Sie Nein, wenn alle Materialien in der Materialauswahlliste angezeigt werden sollen.
• Drücken Sie ENTER.

Die Fluidauswahlliste kann analog dazu angepasst werden (Sonderfunktionen\Bibliotheken\Fluidliste verwenden).

19.6 Verwenden von Parametersätzen

19.6.1 Einführung
Parametersätze sind Datensätze, die alle Angaben für eine bestimmte Messaufgabe enthalten:
• Rohrparameter
• Sensorparameter
• Fluidparameter
• Ausgabeoptionen

Durch die Verwendung von Parametersätzen können sich wiederholende Messaufgaben einfacher und schneller durchgeführt werden. Der Messumformer kann max. 20 Parametersätze speichern.

Hinweis!
Im Lieferzustand sind keine Parametersätze gespeichert. Parametersätze werden manuell eingegeben.

Die Parameter müssen zunächst in den Programmzweigen Parameter, Optionen und Sonderfunktionen eingegeben werden. Danach können sie als Parametersatz gespeichert werden.

Sonderfunktionen\Speicher Param.-satz

• Wählen Sie den Menüpunkt Speicher Param.-satz.
• Drücken Sie ENTER.
• Wählen Sie Akt. Satz speichern.
• Drücken Sie ENTER.

Sonderfunktionen\Name Parametersatz

• Geben Sie einen Namen ein, unter dem der Parametersatz gespeichert werden soll.
• Drücken Sie ENTER.

19.6.2 Laden eines Parametersatzes
Gespeicherte Parametersätze können für eine Messung geladen werden.

Sonderfunktionen\Speicher Param.-satz\Parametersatz laden

• Wählen Sie den Menüpunkt Parametersatz laden.
• Drücken Sie ENTER.
• Wählen Sie den Parametersatz aus, der geladen werden soll.
• Drücken Sie ENTER.
19.6.3 Löschen von Parametersätzen

Sonderfunktionen\Speicher Param.-satz\Param.-satz löschen.

- Wählen Sie den Menüpunkt **Param.-satz löschen.**
- Drücken Sie ENTER.
- Wählen Sie den Parametersatz aus, der gelöscht werden soll.
- Drücken Sie ENTER.

19.7 Kontrast einstellen

Sonderfunktionen\Systemeinstellungen\Display-Kontrast

- Wählen Sie im Programmzweig **Sonderfunktionen** **den Menüpunkt** **Systemeinstellungen** **aus.**
- Drücken Sie ENTER.
- Wählen Sie den Menüpunkt **Display-Kontrast** **aus.**
- Drücken Sie ENTER.

Der Kontrast der Anzeige kann mit folgenden Tasten eingestellt werden:

- **Kontrast erhöhen**
- **Kontrast verringern**
- Drücken Sie ENTER.

Hinweis!

Nach einer Initialisierung des Messumformers wird die Anzeige auf mittleren Kontrast zurückgesetzt.

19.8 HotCodes

Ein HotCode ist eine Ziffernfolge, durch die bestimmte Funktionen und Einstellungen aktiviert werden.

- Drücken Sie Taste [] mehrere Sekunden, um zum Anfang des Programmzweigs zurückzukehren.
- Drücken Sie Taste C.
- Geben Sie den HotCode über die Tastatur ein. Er wird während der Eingabe nicht angezeigt.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>HotCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displaykontrast auf Mittelwert setzen</td>
<td>555000</td>
</tr>
<tr>
<td>Sprachauswahl</td>
<td>9090xx</td>
</tr>
<tr>
<td>Initialisierung</td>
<td>909000</td>
</tr>
<tr>
<td>Flussrichtungserkennung aktivieren/deaktivieren</td>
<td>007026</td>
</tr>
<tr>
<td>Molch-Erkennung aktivieren/deaktivieren</td>
<td>007028</td>
</tr>
<tr>
<td>Mengenzählung auch auf unterer Displayzeile anzeigen</td>
<td>007032</td>
</tr>
</tbody>
</table>
Sprachauswahl
Die Sprachauswahl kann sowohl im Programmzweig Sonderfunktionen, als auch mit einem HotCode erfolgen:

<table>
<thead>
<tr>
<th>Sprache</th>
<th>HotCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>909044</td>
</tr>
<tr>
<td>Deutsch</td>
<td>909049</td>
</tr>
<tr>
<td>Französisch</td>
<td>909033</td>
</tr>
<tr>
<td>Spanisch</td>
<td>909034</td>
</tr>
<tr>
<td>Niederländisch</td>
<td>909031</td>
</tr>
<tr>
<td>Russisch</td>
<td>909007</td>
</tr>
<tr>
<td>Polnisch</td>
<td>909048</td>
</tr>
<tr>
<td>Türkisch</td>
<td>909090</td>
</tr>
<tr>
<td>Italienisch</td>
<td>909039</td>
</tr>
<tr>
<td>Chinesisch</td>
<td>909086</td>
</tr>
</tbody>
</table>

19.9 Tastensperre
Eine laufende Messung kann mit einer Tastensperre vor einem unbeabsichtigten Eingriff geschützt werden.

Festlegen eines Codes für die Tastensperre
• Wählen Sie im Programmzweig Sonderfunktionen den Menüpunkt Systemeinstellungen aus.
• Drücken Sie ENTER.
• Wählen Sie Tastensperre aus.
• Drücken Sie ENTER.
• Geben Sie einen 6-stelligen Code für die Tastensperre ein.
• Drücken Sie ENTER.

Hinweis!
Vergessen Sie den Code für die Tastensperre nicht!

Eingriff in die Messung
Wenn die Tastensperre aktiviert ist, wird beim Drücken einer Taste die Meldung Tastensperre aktiviert einige Sekunden lang angezeigt.
Um eine Messung zu unterbrechen, muss die Tastensperre deaktiviert sein.
• Drücken Sie Taste [].
• Wählen Sie Param. anzeigen aus.
• Drücken Sie ENTER.
• Deaktivieren Sie die Tastensperre.
Deaktivieren der Tastensperre

- Wählen Sie im Programmzweig **Sonderfunktionen** den Menüpunkt **Systemeinstellungen** aus.
- Drücken Sie ENTER.

Sonderfunktionen\Systemeinstellungen\Tastensperre

- Wählen Sie **Tastensperre** aus.
- Drücken Sie ENTER.
- Geben Sie einen 6-stelligen Code für die Tastensperre ein.
- Drücken Sie ENTER.

Gesperrte Funktionen bei aktivierter Tastensperre

Folgende Tabelle zeigt die Funktionen des Messumformers, die bei aktivierter Tastensperre nicht möglich sind.

<table>
<thead>
<tr>
<th>Messung nicht gestartet</th>
<th>Messung gestartet</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Parametereingabe</td>
<td>• Ändern der Einstellungen, die bei laufender Messung möglich sind (z.B. Sprachauswahl)</td>
</tr>
<tr>
<td>• Ändern der Einstellungen (z.B. Messmodi)</td>
<td>• Auslösen von Snaps</td>
</tr>
<tr>
<td>• Löschen des Messwertspeichers</td>
<td>• Umschalten in FastFood-Modus</td>
</tr>
<tr>
<td>• Einstellen von Datum/Uhrzeit</td>
<td>• Umschalten in NoiseTrek-Modus</td>
</tr>
<tr>
<td>• Starten der Messung (Inbetriebnahme)</td>
<td>• Stoppen der Mengenzähler</td>
</tr>
<tr>
<td></td>
<td>• Zurücksetzen der Mengenzähler</td>
</tr>
<tr>
<td></td>
<td>• Stoppen der Messung</td>
</tr>
</tbody>
</table>
20 Wärmestrommessung (Option)

Während der Messumformer die Option Wärmestrommessung und 2 Temperatureingänge hat, kann der Wärmestrom gemessen werden. Dazu wird je ein Temperaturfühler am Vorlauf und am Rücklauf befestigt. Die Sensoren werden vorzugsweise am Rücklauf befestigt. Wenn das nicht möglich ist, können sie auch am Vorlauf befestigt werden.

Abb. 20.1: Wärmestrommessung bei Durchflussmessung

1 – Sensoren
2 – Vorlauf
3 – Rücklauf
4 – Temperaturfühler am Vorlauf (Temperatureingang TV)
5 – Temperaturfühler am Rücklauf (Temperatureingang TR)
6 – Messumformer

Für jeden Temperatureingang kann eine Temperaturkorrektur (Offset) festgelegt werden. Die Wärmemenge ist der Mengenzähler des Wärmestroms.

20.1 Berechnen des Wärmestroms

Der Wärmestrom wird intern berechnet mit der folgenden Formel:

\[
\Phi = k_i \cdot \frac{V}{\rho} \cdot (T_V - T_R)
\]

mit

\(\Phi \) – Wärmestrom

\(k_i \) – Wärmekoeffizient

\(V \) – Volumenstrom

\(T_V \) – Vorlauftemperatur

\(T_R \) – Rücklauftemperatur

Der Wärmekoeffizient \(k_i \) ergibt sich aus mehreren Wärmestromkoeffizienten für die spezifische Enthalpie und die Dichte des Fluids. Die Wärmestromkoeffizienten einiger Fluide sind in der internen Datenbank des Messumformers gespeichert. Wenn für das gewählte Fluid keine Wärmestromkoeffizienten verfügbar sind, wird eine Fehlermeldung angezeigt.
20.2 Festlegen der Messgröße und der Maßeinheit

- Wählen Sie den Menüpunkt **Messung**.
- Drücken Sie **ENTER**.
- Wählen Sie den Listeneintrag **Wärmestrom**.
- Drücken Sie **ENTER**.
- Wählen Sie die Maßeinheit, die für den Wärmestrom verwendet werden soll.
- Drücken Sie **ENTER**.

20.3 Applikation und Sensorpositionierung

- Wählen Sie **Heizen**, wenn das System als Heizapplikation betrieben werden soll.
- Drücken Sie **ENTER**.
- Wählen Sie **Kühlen**, wenn das System als Kühlapplikation betrieben werden soll.
- Drücken Sie **ENTER**.

- Wählen Sie **Rücklauf**, wenn die Messanordnung für eine Wärmestrommessung am Rücklauf konfiguriert wurde.
- Drücken Sie **ENTER**.
- Wählen Sie **Vorlauf**, wenn die Messanordnung für eine Wärmestrommessung am Vorlauf konfiguriert wurde.
- Drücken Sie **ENTER**.

- Wählen Sie **Vorzeichen**, wenn das Vorzeichen des Wärmestroms berücksichtigt werden soll.
- Drücken Sie **ENTER**.
- Wählen Sie **Absolutwert**, wenn nur der Absolutwert des Wärmestroms angezeigt werden soll.
- Drücken Sie **ENTER**.

- Wählen Sie **Ja**, wenn sich der Aggregatzustand des Fluids zwischen Vorlauf und Rücklauf ändert. Wählen Sie **Nein**, wenn er sich nicht ändert.
- Drücken Sie **ENTER**.

Diese Funktion steht nur zur Verfügung, wenn im Programmzweig **Parameter** als Fluid Wasser, Ammoniak oder ein Kältemittel ausgewählt wurde.

Im SuperUser-Modus kann zusätzlich ein unterer Grenzwert der Temperaturdifferenz eingegeben werden.

- Wählen Sie im Programmzweig **Optionen** den Menüpunkt **Spez. Einstellungen**.
- Drücken Sie **ENTER**.
- Wählen Sie **Benutzerdefiniert**, um einen unteren Grenzwert für die Wärmestrommessung festzulegen.
- Drücken Sie **Ja**, wenn keine benutzerdefinierten Eingaben vorgenommen und die voreingestellten Werte verwendet werden sollen.
- Wählen Sie **Aus**, wenn kein unterer Grenzwert für die Wärmestrommessung festgelegt werden soll.
- Drücken Sie **ENTER**.
20.4 Zuordnen der Temperatureingänge

- Wählen Sie den Listeneintrag Eingänge zuordnen.
- Drücken Sie ENTER.
- Wählen Sie den Listeneintrag Vorlauf temperatur.
- Drücken Sie ENTER.
- Wählen Sie die Zuordnung für die Bestimmung der Vorlauf temperatur. Wählen Sie Festwert, wenn die Vorlauf temperatur bekannt und während der gesamten Messdauer konstant ist. Der Wert wird im Programmzweig Parameter eingegeben.
- Drücken Sie ENTER.
- Wählen Sie den Listeneintrag Rücklauf temperatur.
- Drücken Sie ENTER.
- Wählen Sie die Zuordnung für die Bestimmung der Rücklauf temperatur. Wählen Sie Festwert, wenn die Rücklauf temperatur bekannt und während der gesamten Messdauer konstant ist. Der Wert wird im Programmzweig Parameter eingegeben.
- Drücken Sie ENTER.
Anhang

A Menüstruktur

Programmzweige

<table>
<thead>
<tr>
<th>Programmzweig</th>
<th>Parameter</th>
<th>Messung</th>
<th>Optionen</th>
<th>Sonderfunktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanal x</td>
<td>Kanäle wählen</td>
<td>Kanal x</td>
<td>Systemeinstellungen</td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Messstellennummer</td>
<td>Messung</td>
<td>Eingänge</td>
<td></td>
</tr>
<tr>
<td>Außendurchmesser</td>
<td>Schallweg</td>
<td>Maßeinheiten</td>
<td>Ausgänge</td>
<td></td>
</tr>
<tr>
<td>Rohrmaterial</td>
<td>Sensorabstand</td>
<td>Ausgänge</td>
<td>Messung</td>
<td></td>
</tr>
<tr>
<td>Auskleidung</td>
<td>Diagnosewerte</td>
<td>Ereignistrigger</td>
<td>Snap</td>
<td></td>
</tr>
<tr>
<td>Rauigkeit</td>
<td>Vorschlag Sensorabstand</td>
<td>Spez. Einstellungen</td>
<td>Kommunikation</td>
<td></td>
</tr>
<tr>
<td>Fluid</td>
<td>Messung</td>
<td>Maßeinheiten</td>
<td>Kommunikation</td>
<td></td>
</tr>
<tr>
<td>Fluidtemp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verlängerungskabel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende

Parameter

- **Kanal x**
- **Sensor**

Angeschl. Sensor

- **Sensor auswählen**
 - **Außendurchmesser**
 - **Rohmaterial**
 - **Rohrwanddicke**
 - **Auskleidung**

Ja

Nein

Auskleidung 2

- **Ummantelung**
- **Rauigkeit**

Automatisch

Benutzerdefiniert

- **Fluid**
- **Fluidtemp.**
- **Verlängerungskabel**

Legende

[1] nur, wenn in Sonderfunktionen Dialoge/Menüs freigegeben
Messeinstellungen

Anhang

A Menüstruktur

Messeinstellungen

- **Optionen**
 - **Kanal x**
 - **Messung**
 - **Messgröße**
 - Volumenstrom
 - Massenstrom
 - Wärmestrom
 - Schallgeschwind.
 - Strömungsgeschw.
 - **Maßeinheit**
 - **Dämpfung**
 - Dyn. Dämpfung
 - nur, wenn in Messung>Messeinstellungen>Dyn. Dämpfung freigegeben
 - **Fehlerverzögerung**
 - nur, wenn in Sonderfunktionen>Dialoge/Menüs freigegeben

Legende

[1] nur, wenn in Messung>Messeinstellungen>Dyn. Dämpfung freigegeben

[2] nur, wenn in Sonderfunktionen>Dialoge/Menüs freigegeben
Anhang
A Menüstruktur

Messwertspeicher

Konfiguration
Kanäle Speichern
Speichern starten

Messwerte löschen
Messwerte drucken
Übertragungseinstellung
Speicher-Info

[1] Ereignisbasiert
Sofort
Volle 5 Minuten
Volle 10 Minuten
Volle 15 Minuten
Volle 30 Minuten
Volle Stunde

[2] Speicher voll:
→ Aktiviert:
→ Speicher leer:
→ Speicher belegt:

Speicherloschen

Konfiguration

Messwerte löschen

Messwerte drucken

Übertragungseinstellung

Speicher-Info

Legende
[1] Liste der triggerbaren Eingänge und Ereignistrigger, die parametriert sind
[2] nur, wenn RS485-Schnittstelle verfügbar
Messung starten

Parameter

Messung

Kanäle wählen

Messstellennummer

Schallweg

Sensorabstand

Für jeden aktivierten Messkanal

Diagnosewerte

Vorschlag Sensorabstand

Messung

Messung stoppen

Messung anzeigen

Param. anzeigen

Lesemodus
Eingänge konfigurieren

- Sonderfunktionen
 - Eingänge
 - Temperatur
 - Strom

Temperatur

- Tx freigeben
 - Nein
 - Ja

 °C

Triggerwert

- Nein
 - Ja

 -> Temperatur

Funktion

- -> Im Bereich
 - -> Außerh. Bereich
 - -> MAX (x>Grenzwert)
 - -> MIN (x<Grenzwert)
 - -> ERR (x=Ausfall)

- -> Bereichsmitte
 - -> Triggerwert
 - -> Bereichsbreite
 - -> Hysterese
 - -> Verzögerungszeit

Info Eingang

Signal testen

Eingänge

Legende

[1] nur, wenn in Sonderfunktionen\Dialoge\Menüs freigegeben
Eingänge konfigurieren

Sonderfunktionen

Eingänge

→ Temperatur
→ Strom

Ix freigeben

Strom

Ja

Nein

→ Temperatur
→ Druck
→ Dichte
→ Kin. Viskosität
→ Dyn. Viskosität

Quellgröße

Benutzerdefiniert

Strom

Name Eingang

Maßeinheit

Decimalstellen

Eingabebereich

→ 0...20 mA
→ 4...20 mA

Anderer Bereich

→ Eingabe MIN I
→ Eingabe MAX I

→ Anfang Messbereich
→ Ende Messbereich

Fehlerwert

Ja

Nein

Triggerwert

Nein

Ja

Funktion

Eingangsmodus [1]

Aktiv
Passiv

Info Eingang
Signal testen
Messab testen

Eingänge

Legende

[1] nur, wenn von Hardware unterstützt
Wärmestrommessung

Optionen
- Kanal x
- Messung
- Messgröße
- → Wärmestrom

Sonderfunktionen
- Eingänge
- Temperatur
- Ja
- Pt100/Pt1000
- Offset
- [1]
- Triggerwert
- Ja
- Funktion
- → Im Bereich
- → Außen. Bereich
- MAX (x>Grenzwert)
- MIN (x<Grenzwert)
- ERR (x=Ausfall)
- Bereichsmittel
- Triggerwert
- Bereichstrenne
- Hysteresis
- Verzögerungszeit
- Inb. Eingang
- Signal testen

Optionen
- Kanal x
- Spez. Einstellungen
- Applikation
- Kühlen
- Heizen
- Sensorposition
- Vorlauf
- Rücklauf
- Wärmestromwert
- Vorzeichen
- Absolutwert
- Grenzwert ΔT
- [2]
- Voreinstellung
- Benutzerdefiniert
- Aus

Legende

[1] nur, wenn in Sonderfunktionen/Dialoge/Menüs freigegeben

Verrechnungskanäle

1. Parameter
 - Kanal x
 - Verrechnung
 - Verrechnungsart
 - Mittel (alle Kan. OK) (AND)
 - Mittel (1 Kanal OK) (OR)
 - Kein Grenzwert
 - Grenzwert ausgeben
 - Fehler ausgeben
 - Oberer Grenzwert
 - Schleichmenge
 - Verrechnung

2. Optionen
 - Kanal x
 - Messung
 - Maßgrößen
 - Messgröße
 - Volumenstrom
 - Massenstrom
 - Wärmestrom
 - Schallgeschwind.
 - Strömungsgeschwe.
 - Maßeinheit
 - Volumen
 - Massenstrom
 - Masse
 - Wärmestrom
 - Wärmemenge
 - Fehlerverzögerung [1]
 - Maßeinheiten
 - Strömungsgeschwe.
 - Volumenstrom
 - Massenstrom
 - Wärmestrom
 - Wärmemenge

Legende
[1] nur, wenn in Sonderfunktionen\Dialogen/Menüs freigegeben
Ereignisse – Übersicht

Auslöser
- Eingangsgrößen
- Sonderfunktionen
 - → Temperatur
 - → Strom
- Messgrößen
- Optionen
 - → Durchflussgrößen
 - → Schallgeschwindigkeit
 - → Mengenzähler
 - → Fluideigenschaften
 - → Diagnosewerte

Bedingung
- Ereignistrigger
 - R1
 - R2
 - R3
 - R4
 - → Schaltbedingung
 - → Rückstellverhalten
 - → Verzögerungszeit
 - → Ausfallverzögerung

Aktion
- Messwertspeicherung
- Ferngest. Funktionen
- Snap erstellen
 - → Ereignisbasiert
 - → Ereignisbasiert
 - → Messw. zurück
 - → Mengenz. zurück
 - → Mengenz. stopp
 - → Nicht verrechn. [1]
 - → FastF aktivieren [1]

Legende
[1] nur für physikalische Kanäle
Ereignistrigger definieren

1. Optionen
 - Kanal x
 - Ereignistrigger
 - Rx wählen
 - Rx freigeben
 - Nein
 - Ja
 - Quellgröße
 - Schaltgescheind
 - Durchflussgrößen
 - Mengenzähler
 - Fluideigenschaften
 - Diagnosewerte
 - Sonstiges

2. Optionen
 - Kanal x
 - Ausgänge
 - Ausgang wählen
 - Ereignis
 - Ja
 - Quellgröße
 - Ereignistrigger
 - Ausgabebereich
 - Ruhezustand
 - Info Ausgang
 - Signal lesen

Legende
[1] bei Verrechnungskanälen nicht verfügbar
[2] von Auswahl der Funktion abhängig
Ferngesteuerte Funktionen

1 Auslöser

- Sonderfunktionen
- Eingänge
 - Temperatur
 - Strom
 - freigeben
 - freigegeben
 - Pt100/Pt1000
 - Quellgröße

Bedingung
- Triggerwert
- Ja
- MAX (x>Grenzwert)
- MIN (x<Grenzwert)
- Im Bereich
- Außerh. Bereich
- ERR (x=Ausfall)
- Bereichsmitte
- Triggerwert
- Bereichsbreite
- Hysterese
- Verzögerungszeit
- Info Eingang
- Signalkosten

2 Aktion

- Optionen
- Kanal x
- Ferngest. Funktionen
 - Messw. zurück [3]
 - Mengen zurück
 - Mengen stopps
 - FastF aktivieren [2]
 - Nicht verrech. [2]
- Eingang/ Ereignistrigger [4]
- Optionen
- Kanal x
- Ereignistrigger
- Rx wählen
- Rx freigeben
- Quellgröße
- Funktion
- MAX (x>Grenzwert)
- MIN (x<Grenzwert)
- Im Bereich
- Außerh. Bereich
- ERR (x=Ausfall)
- Typ
- Nicht haltend
- Kurzzeitig haltend
- Haltend
- Halte-Intervall
- [1] von Auswahl der Funktion abhängig
- [2] bei Verrechnungskanälen nicht verfügbar und nur, wenn FastFood-Modus in
 Standard-Einstellung ist
- [3] nur über Eingänge steuerbar
- [4] Liste der triggerbaren Eingänge und Ereignistrigger, die parametriert wurden

Legende

[1] von Auswahl der Funktion abhängig
[2] bei Verrechnungskanälen nicht verfügbar und nur, wenn FastFood-Modus in
 Standard-Einstellung ist
[3] nur über Eingänge steuerbar
[4] Liste der triggerbaren Eingänge und Ereignistrigger, die parametriert wurden
Anhang

Ereignisbasiertes Speichern der Messwerte

1 Auslöser

- Sonderfunktionen
- Eingänge
 - Temperatur
 - Strom
 - freigeben
 - Quellgröße
 - Pt100/Pt1000

Bedingung

- Triggerwert
- Ja

Bedingung

- Ereignistrigger
 - MAX (x>Grenzwert)
 - MIN (x<Grenzwert)
 - Im Bereich
 - Außerh. Bereich
 - ERR (x=Ausfall)

- Typ
 - Nicht haltend
 - Kurzzeitig haltend
 - Haltend
 - Halte-Interval

- Info Eingang
- Signal testen

2 Aktion

- Sonderfunktionen
- Messwertspeicher
- Konfiguration
- Kanäle Speicherung
- Speichern starten
- Ereignisbasiert
- Mit Eingang
- Ablagerate ohne Trig.

- Ablagerate (Trig.)
- Pufferzeit → π
- Pufferzeit π →
- Ablagerate FastFood
- Ringpuffer
- Ablagerate Modus

Legende

[1] von Auswahl der Funktion abhängig
Beispiel 1

Die Diagnosewerte sollen kontrolliert werden.
Wenn der SCNR kleiner 20 dB ist, soll ein Snap ausgelöst werden.

Auslöser: SCNR < 20 dB
Bedingung: R1 mit SCNR < 20 dB
Aktion: Snap auslösen

1. Optionen
 - Kanal A
 - Ersatzmesser
 - R1 wählen
 - R1 freigeben
 - Ja
 - Quellgröße
 → Diagnosewerte
 → SCNR
 → Funktion
 → MIN (x<Grenzwert)
 → Typ
 → Nicht haltend
 → Triggerwert
 → 20.0 dB
 → Hysterese
 → 1.0 dB
 → Verzögerungszeit
 → 1.0 s
 → Ausfallverzögerung
 → 1.0 s

2. Sonderfunktionen
 - Snap
 - Konfiguration
 - Ein
 - Snap-Ringbuffer
 - Ja
 → Auto-Snap
 - Nein
 → Snap auf R1
 - Ja

Nein
→ SCNR
→ MIN (x<Grenzwert)
→ Nicht haltend
→ 20.0 dB
→ 1.0 dB
→ 1.0 s
Beispiel 2

Es soll die Ablagerate aller Mess- und Diagnosewerte in einem bestimmten Temperaturbereich geändert werden. Die normale Ablagerate aller Mess- und Diagnosewerte ist 1 h. Wenn die Temperatur außerhalb des festgelegten Bereichs 20...40 °C liegt, soll die Ablagerate 1 min betragen. Dabei soll auch 10 s vor und 60 s nach dem Ereignis eine Aufzeichnung erfolgen.

Der Temperaturbereich 0…100 °C soll über einen Stromeingang 4…20 mA erfasst werden.

Auslöser: 20 °C > Fluidtemperatur > 40 °C auf Stromeingang I1

Bedingung: I1 als Triggerwert außerhalb des Bereichs 20...40 °C

Aktion: Messwerte im Temperaturbereich 20...40 °C mit einer Ablagerate von 1 h speichern

<table>
<thead>
<tr>
<th>Bedingung</th>
<th>Aktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 °C > Fluidtemperatur > 40 °C auf Stromeingang I1</td>
<td>Messwerte im Temperaturbereich 20...40 °C mit einer Ablagerate von 1 h speichern</td>
</tr>
</tbody>
</table>

Sonderfunktionen

<table>
<thead>
<tr>
<th>Eingänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom I1</td>
</tr>
<tr>
<td>I1 freigegeben</td>
</tr>
<tr>
<td>Ja</td>
</tr>
</tbody>
</table>

Konfiguration

| Quellgröße |
| Temp |
| Eingabebereich |
| 4...20 mA |

Messwertspeicher

| Anfang Messbereich |
| 0.0 °C |

| Ende Messbereich |
| 100.0 °C |

| Fehlerwert |
| Ja |
| 3.50 mA |

| Triggerwert |
| Ja |

Funktion

| Ablagerate |
| Ja |
| I1 Eingabebereich |
| 1 h |

| Triggerwert |
| Ablagerate (Trg.) |
| 1 min |

| Pufferzeit →П |
| 10 s |

| Pufferzeit П→ |
| 60 s |

| Ringbuffer |
| Ja |
| Ablagemodus |

| Mengen speichern |
| Ja |

Diagnose speichern

| Sensor temp. speich. |
| Ja |

| Bereichsmitte |
| 30.0 °C |

| Bereichsbreite |
| 20.0 °C |

Verzögerungszeit

| 1 s |

Messb. testen

Info Eingang
Beispiel 3

Die Strömungsgeschwindigkeit wird gemessen.
Wenn die Strömungsgeschwindigkeit ≤ 5 m/s ist, misst der Messumformer im TransitTime-Modus. Wenn die Strömungsgeschwindigkeit > 5 m/s ist, soll der Messumformer im FastFood-Modus messen.

Auslöser: Strömungsgeschwindigkeit > 5 m/s

Bedingung: R1 mit Strömungsgeschwindigkeit > 5 m/s

Aktion: Messung im FastFood-Modus
B Maßeinheiten

Länge/Rauigkeit

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>in</td>
<td>Zoll</td>
</tr>
</tbody>
</table>

Temperatur

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>°F</td>
<td>Grad Fahrenheit</td>
</tr>
</tbody>
</table>

Druck

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar (a)</td>
<td>bar (absolut)</td>
</tr>
<tr>
<td>bar (g)</td>
<td>bar (relativ)</td>
</tr>
<tr>
<td>psi (a)</td>
<td>pound per square inch (absolut)</td>
</tr>
<tr>
<td>psi (g)</td>
<td>pound per square inch (relativ)</td>
</tr>
</tbody>
</table>

Dichte

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cm³</td>
<td>Gramm pro Kubikzentimeter</td>
</tr>
<tr>
<td>kg/cm³</td>
<td>Kilogramm pro Kubikzentimeter</td>
</tr>
</tbody>
</table>

Schallgeschwindigkeit

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/s</td>
<td>Meter pro Sekunde</td>
</tr>
<tr>
<td>fps (ft/s)</td>
<td>foot per second</td>
</tr>
</tbody>
</table>

Kinematische Viskosität

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²/s</td>
<td>Quadratmillimeter pro Sekunde</td>
</tr>
</tbody>
</table>

1 mm²/s = 1 cSt

Strömungsgeschwindigkeit

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/s</td>
<td>Meter pro Sekunde</td>
</tr>
<tr>
<td>cm/s</td>
<td>Zentimeter pro Sekunde</td>
</tr>
<tr>
<td>in/s</td>
<td>inch per second</td>
</tr>
<tr>
<td>fps (ft/s)</td>
<td>foot per second</td>
</tr>
</tbody>
</table>
Volumenstrom

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
<th>Voreinstellung Volumen (totalisiert) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³/d</td>
<td>Kubikmeter pro Tag</td>
<td>m³</td>
</tr>
<tr>
<td>m³/h</td>
<td>Kubikmeter pro Stunde</td>
<td>m³</td>
</tr>
<tr>
<td>m³/min</td>
<td>Kubikmeter pro Minute</td>
<td>m³</td>
</tr>
<tr>
<td>m³/s</td>
<td>Kubikmeter pro Sekunde</td>
<td>m³</td>
</tr>
<tr>
<td>km³/h</td>
<td>Kubikkilometer pro Stunde</td>
<td>km³</td>
</tr>
<tr>
<td>ml/min</td>
<td>Milliliter pro Minute</td>
<td>l</td>
</tr>
<tr>
<td>1/h</td>
<td>Liter pro Stunde</td>
<td>l</td>
</tr>
<tr>
<td>1/min</td>
<td>Liter pro Minute</td>
<td>l</td>
</tr>
<tr>
<td>1/s</td>
<td>Liter pro Sekunde</td>
<td>l</td>
</tr>
<tr>
<td>hl/h</td>
<td>Hektoliter pro Stunde</td>
<td>hl</td>
</tr>
<tr>
<td>hl/min</td>
<td>Hektoliter pro Minute</td>
<td>hl</td>
</tr>
<tr>
<td>hl/s</td>
<td>Hektoliter pro Sekunde</td>
<td>hl</td>
</tr>
<tr>
<td>Ml/d (Megalit/d)</td>
<td>Megaliter pro Tag</td>
<td>Ml</td>
</tr>
<tr>
<td>bbl/d (4)</td>
<td>barrel per day</td>
<td>bbl</td>
</tr>
<tr>
<td>bbl/h (4)</td>
<td>barrel per hour</td>
<td>bbl</td>
</tr>
<tr>
<td>bbl/m (4)</td>
<td>barrel per minute</td>
<td>bbl</td>
</tr>
<tr>
<td>bbl/s (4)</td>
<td>barrel per second</td>
<td>bbl</td>
</tr>
<tr>
<td>USgpd (US-gal/d)</td>
<td>gallon per day</td>
<td>gal</td>
</tr>
<tr>
<td>USgph (US-gal/h)</td>
<td>gallon per hour</td>
<td>gal</td>
</tr>
<tr>
<td>USgpm (US-gal/m)</td>
<td>gallon per minute</td>
<td>gal</td>
</tr>
<tr>
<td>USgps (US-gal/s)</td>
<td>gallon per second</td>
<td>gal</td>
</tr>
<tr>
<td>KGPM (US-Kgal/m)</td>
<td>kilogallon per minute</td>
<td>kgal</td>
</tr>
<tr>
<td>MGD (US-Mgal/d)</td>
<td>million gallons per day</td>
<td>Mgal</td>
</tr>
<tr>
<td>CFD</td>
<td>cubic foot per day</td>
<td>cft (2)</td>
</tr>
<tr>
<td>CFH</td>
<td>cubic foot per hour</td>
<td>cft</td>
</tr>
<tr>
<td>CFM</td>
<td>cubic foot per minute</td>
<td>cft</td>
</tr>
<tr>
<td>CPS</td>
<td>cubic foot per second</td>
<td>aft (3)</td>
</tr>
<tr>
<td>MMCFD</td>
<td>million cubic feet per day</td>
<td>MMCFD</td>
</tr>
</tbody>
</table>

(1) Auswahl über Optionen Maßeinheiten
(2) cft: cubic foot
(3) aft: acre foot
(4) Im Menüpunkt Sonderfunktionen Maßeinheiten Barreltyp kann festgelegt werden, welcher Barreltyp bei der Einstellung der Maßeinheiten für Volumenstrom und totalisiertes Volumen angezeigt werden soll. Wenn der Barreltyp Imperial (UK) ausgewählt wurde, werden Imperial (UK) Gallons statt US Gallons verwendet.

1 US-gal = 3.78541 l
1 UK-gal = 4.54609 l
US Barrel Oil = 42.0 US-gal = 159 l
US Barrel Wine = 31.5 US-gal = 119 l
US Barrel Beer = 31.0 US-gal = 117 l
Imperial (UK) Barrel = 36.0 UK-gal = 164 l
Anhang

FLUXUS F736 B Maßeinheiten

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMCFH</td>
<td>million cubic feet per hour</td>
</tr>
<tr>
<td>lgpd (Imp-gal/d)</td>
<td>gallon per day</td>
</tr>
<tr>
<td>lgph (Imp-gal/h)</td>
<td>gallon per hour</td>
</tr>
<tr>
<td>lgpm (Imp-gal/m)</td>
<td>gallon per minute</td>
</tr>
<tr>
<td>lgps (Imp-gal/s)</td>
<td>gallon per second</td>
</tr>
<tr>
<td>IKGM (Imp-Kgal/m)</td>
<td>imperial kilogallon per minute</td>
</tr>
<tr>
<td>IMGD (Imp-Mgal/d)</td>
<td>million imperial gallons per day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>GW</td>
<td>Gigawatt</td>
</tr>
<tr>
<td>kBTU/minute</td>
<td>kBTU per minute</td>
</tr>
<tr>
<td>kBTU/hour</td>
<td>kBTU per hour</td>
</tr>
<tr>
<td>MBTU/hour</td>
<td>MBTU per hour</td>
</tr>
<tr>
<td>MBTU/day</td>
<td>MBTU per day</td>
</tr>
<tr>
<td>TON (TH)</td>
<td>TON, totals in TONhours</td>
</tr>
<tr>
<td>TON (TD)</td>
<td>TON, totals in TONdays</td>
</tr>
<tr>
<td>kTON (kTH)</td>
<td>kTON, totals in kTONhours</td>
</tr>
<tr>
<td>kTON (kTD)</td>
<td>kTON, totals in kTONdays</td>
</tr>
</tbody>
</table>

Wärmestrom

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wh</td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td></td>
</tr>
<tr>
<td>kBT</td>
<td></td>
</tr>
<tr>
<td>kBTU/hour</td>
<td></td>
</tr>
<tr>
<td>MBTU/hour</td>
<td></td>
</tr>
<tr>
<td>MBTU/day</td>
<td></td>
</tr>
<tr>
<td>TON (TH)</td>
<td></td>
</tr>
<tr>
<td>TON (TD)</td>
<td></td>
</tr>
<tr>
<td>kTON (kTH)</td>
<td></td>
</tr>
<tr>
<td>kTON (kTD)</td>
<td></td>
</tr>
</tbody>
</table>

Volumen (totalisiert) (1)

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMCF</td>
<td>Gallons per hour</td>
</tr>
<tr>
<td>lgal</td>
<td>Gallon per day</td>
</tr>
<tr>
<td>lgal</td>
<td>Gallon per hour</td>
</tr>
<tr>
<td>lgal</td>
<td>Gallon per minute</td>
</tr>
<tr>
<td>lgal</td>
<td>Gallon per second</td>
</tr>
<tr>
<td>IG</td>
<td>Imperial Gallons per minute</td>
</tr>
<tr>
<td>IMG</td>
<td>Million Imperial Gallons per day</td>
</tr>
</tbody>
</table>

Wärmemenge (totalisiert) (1)

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wh</td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td></td>
</tr>
<tr>
<td>kBT</td>
<td></td>
</tr>
<tr>
<td>kBTU/hour</td>
<td></td>
</tr>
<tr>
<td>MBTU/hour</td>
<td></td>
</tr>
<tr>
<td>MBTU/day</td>
<td></td>
</tr>
<tr>
<td>TON (TH)</td>
<td></td>
</tr>
<tr>
<td>TON (TD)</td>
<td></td>
</tr>
<tr>
<td>kTON (kTH)</td>
<td></td>
</tr>
<tr>
<td>kTON (kTD)</td>
<td></td>
</tr>
</tbody>
</table>

1 US-gal = 3.78541 l
1 UK-gal = 4.54609 l
US Barrel Oil = 42.0 US-gal = 159 l
US Barrel Wine = 31.5 US-gal = 119 l
US Barrel Beer = 31.0 US-gal = 117 l
Imperial (UK) Barrel = 36.0 UK-gal = 164 l

BTU: British Thermal Unit
1 W = 1 J/s = (1/1055.05585262) BTU/s
1 W = 1 J/s = (1/3516.852842) TON
1 TON = 200 BTU/min

(1) Auswahl über Optionen\Maßeinheiten
(2) cft: cubic foot
(3) a: acre foot
(4) Im Menüpunkt Sonderfunktionen\Maßeinheiten\Barreltyp kann festgelegt werden, welcher Barreltyp bei der Einstellung der Maßeinheiten für Volumenstrom und totalisiertes Volumen angezeigt werden soll. Wenn der Barreltyp Imperial (UK) ausgewählt wurde, werden Imperial (UK) Gallons statt US Gallons verwendet.
Massenstrom

<table>
<thead>
<tr>
<th>Maßeinheit</th>
<th>Beschreibung</th>
<th>Masse (totalisiert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t/h</td>
<td>Tonne pro Stunde</td>
<td>t</td>
</tr>
<tr>
<td>t/d</td>
<td>Tonne pro Tag</td>
<td>t</td>
</tr>
<tr>
<td>kg/h</td>
<td>Kilogramm pro Stunde</td>
<td>kg</td>
</tr>
<tr>
<td>kg/min</td>
<td>Kilogramm pro Minute</td>
<td>kg</td>
</tr>
<tr>
<td>kg/s</td>
<td>Kilogramm pro Sekunde</td>
<td>kg</td>
</tr>
<tr>
<td>g/s</td>
<td>Gramm pro Sekunde</td>
<td>g</td>
</tr>
<tr>
<td>lb/d</td>
<td>pound per day</td>
<td>lb</td>
</tr>
<tr>
<td>lb/h</td>
<td>pound per hour</td>
<td>lb</td>
</tr>
<tr>
<td>lb/m</td>
<td>pound per minute</td>
<td>lb</td>
</tr>
<tr>
<td>lb/s</td>
<td>pound per second</td>
<td>lb</td>
</tr>
<tr>
<td>klb/h</td>
<td>kilopound per hour</td>
<td>klb</td>
</tr>
<tr>
<td>klb/m</td>
<td>kilopound per minute</td>
<td>klb</td>
</tr>
</tbody>
</table>

1 lb = 453.59237 g
1 t = 1000 kg
C Referenz

C.1 Schallgeschwindigkeit ausgewählter Rohr- und Auskleidungsstoffen bei 20 °C

Die Werte einiger dieser Materialien sind in der internen Datenbank des Messumformers gespeichert. In Spalte c\textsubscript{flow} wird der Schallwellentyp (longitudinal oder transversal) angezeigt, der für die Durchflussmessung verwendet wird.

<table>
<thead>
<tr>
<th>Material (Anzeige)</th>
<th>Erklärung</th>
<th>c\textsubscript{trans} [m/s]</th>
<th>c\textsubscript{long} [m/s]</th>
<th>c\textsubscript{flow}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahl (Normal)</td>
<td>Stahl, normal</td>
<td>3230</td>
<td>5930</td>
<td>trans</td>
</tr>
<tr>
<td>Stahl (NIRO)</td>
<td>Stahl, rostfrei</td>
<td>3100</td>
<td>5790</td>
<td>trans</td>
</tr>
<tr>
<td>DUPLEX</td>
<td>Duplexstahl</td>
<td>3272</td>
<td>5720</td>
<td>trans</td>
</tr>
<tr>
<td>Duktiler Guss</td>
<td>duktile Guss</td>
<td>2650</td>
<td>-</td>
<td>trans</td>
</tr>
<tr>
<td>Asbestzement</td>
<td>Asbestzement</td>
<td>2200</td>
<td>-</td>
<td>trans</td>
</tr>
<tr>
<td>Titan</td>
<td>Titan</td>
<td>3067</td>
<td>5955</td>
<td>trans</td>
</tr>
<tr>
<td>Kupfer</td>
<td>Kupfer</td>
<td>2260</td>
<td>4700</td>
<td>trans</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Aluminium</td>
<td>3100</td>
<td>6300</td>
<td>trans</td>
</tr>
<tr>
<td>Messing</td>
<td>Messing</td>
<td>2100</td>
<td>4300</td>
<td>trans</td>
</tr>
<tr>
<td>Kunststoff</td>
<td>Kunststoff</td>
<td>1120</td>
<td>2000</td>
<td>long</td>
</tr>
<tr>
<td>GFK</td>
<td>glasfaserverst"ckter Kunststoff</td>
<td>-</td>
<td>2650</td>
<td>long</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinylchlorid</td>
<td>-</td>
<td>2395</td>
<td>long</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylen</td>
<td>540</td>
<td>1950</td>
<td>long</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylen</td>
<td>2600</td>
<td>2550</td>
<td>trans</td>
</tr>
<tr>
<td>Bitumen</td>
<td>Bitumen</td>
<td>2500</td>
<td>-</td>
<td>trans</td>
</tr>
<tr>
<td>Plexiglas</td>
<td>Plexiglas</td>
<td>1250</td>
<td>2730</td>
<td>long</td>
</tr>
<tr>
<td>Blei</td>
<td>Blei</td>
<td>700</td>
<td>2200</td>
<td>long</td>
</tr>
<tr>
<td>Cu-Ni-Fe</td>
<td>Kupfer-Nickel-Eisen-Legierung</td>
<td>2510</td>
<td>4900</td>
<td>trans</td>
</tr>
<tr>
<td>Grauguss</td>
<td>Grauguss</td>
<td>2200</td>
<td>4600</td>
<td>trans</td>
</tr>
<tr>
<td>Gummi</td>
<td>Gummi</td>
<td>1900</td>
<td>2400</td>
<td>trans</td>
</tr>
<tr>
<td>Glas</td>
<td>Glas</td>
<td>3400</td>
<td>5600</td>
<td>trans</td>
</tr>
<tr>
<td>PFA</td>
<td>Perfluorkohlen</td>
<td>500</td>
<td>1185</td>
<td>long</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinildenfluorid</td>
<td>760</td>
<td>2050</td>
<td>long</td>
</tr>
<tr>
<td>Sintimid</td>
<td>Sintimid</td>
<td>-</td>
<td>2472</td>
<td>long</td>
</tr>
<tr>
<td>Teka PEEK</td>
<td>Teka PEEK</td>
<td>-</td>
<td>2534</td>
<td>long</td>
</tr>
<tr>
<td>Tekason</td>
<td>Tekason</td>
<td>-</td>
<td>2230</td>
<td>long</td>
</tr>
</tbody>
</table>

C.2 Typische Rauigkeitswerte von Rohrleitungen

Die Werte beruhen auf Erfahrung und Messungen.

<table>
<thead>
<tr>
<th>Material</th>
<th>absolute Rauigkeit [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>gezogene Rohre aus Buntmetall, Glas, Kunststoff und Leichtmetall</td>
<td>0...0.0015</td>
</tr>
<tr>
<td>gezogene Stahlrohre</td>
<td>0.01...0.05</td>
</tr>
<tr>
<td>feingeschichtet, geschliffene Oberfläche</td>
<td>max. 0.01</td>
</tr>
<tr>
<td>geschlichtete Oberfläche</td>
<td>0.01...0.04</td>
</tr>
<tr>
<td>geschruppte Oberfläche</td>
<td>0.05...0.1</td>
</tr>
<tr>
<td>geschweißte Stahlrohre, neu</td>
<td>0.05...0.1</td>
</tr>
<tr>
<td>nach längerem Gebrauch, gereinigt</td>
<td>0.15...0.2</td>
</tr>
<tr>
<td>mäßig verrostet, leicht verkrustet</td>
<td>max. 0.4</td>
</tr>
<tr>
<td>schwer verkrustet</td>
<td>max. 3</td>
</tr>
<tr>
<td>gusseiserne Rohre:</td>
<td></td>
</tr>
<tr>
<td>inwandig bitumiert</td>
<td>> 0.12</td>
</tr>
<tr>
<td>neu, nicht ausgekleidet</td>
<td>0.25...1</td>
</tr>
<tr>
<td>angerostet</td>
<td>1...1.5</td>
</tr>
<tr>
<td>verkrustet</td>
<td>1.5...3</td>
</tr>
</tbody>
</table>
C.3 Typische Eigenschaften ausgewählter Fluide bei 20 °C

C.3.1 Stoffgemische mit fester Zusammensetzung

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Erklärung</th>
<th>Schallgeschwindigkeit [m/s]</th>
<th>Dichte [g/cm³]</th>
<th>kinematische Viskosität [mm²/s]</th>
<th>Einsatzbereich °C</th>
<th>WMM (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>Wasser flüssig</td>
<td>1482</td>
<td>0.999</td>
<td>1</td>
<td>0…350 x</td>
<td></td>
</tr>
<tr>
<td>Propan</td>
<td>druckverflüssigt</td>
<td>755</td>
<td>500</td>
<td>0.2</td>
<td>-180…+97</td>
<td></td>
</tr>
<tr>
<td>Butan</td>
<td>druckverflüssigt, Kältetemittel R-600</td>
<td>929</td>
<td>577</td>
<td>0.3</td>
<td>-135…+152 x</td>
<td></td>
</tr>
<tr>
<td>Ammoniak</td>
<td>druckverflüssigt, Kältetemittel R-717</td>
<td>1373</td>
<td>610</td>
<td>0.2</td>
<td>-78…+132 x</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
<td>1119</td>
<td>792</td>
<td>0.7</td>
<td>-95…+240</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td>1158</td>
<td>789</td>
<td>1.5</td>
<td>-110…+241</td>
<td></td>
</tr>
<tr>
<td>Aceton</td>
<td></td>
<td>1187</td>
<td>791</td>
<td>0.4</td>
<td>-90…+235</td>
<td></td>
</tr>
<tr>
<td>R134a FKW</td>
<td>Kältetemittel FKW</td>
<td>521</td>
<td>1240</td>
<td>0.2</td>
<td>-100…+100 x</td>
<td>x</td>
</tr>
<tr>
<td>R407C FKW</td>
<td>Kältetemittel FKW</td>
<td>494</td>
<td>1158</td>
<td>0.1</td>
<td>-20…+81 x</td>
<td>x</td>
</tr>
<tr>
<td>R410A FKW</td>
<td>Kältetemittel FKW</td>
<td>457</td>
<td>1085</td>
<td>0.1</td>
<td>-130…+71 x</td>
<td>x</td>
</tr>
<tr>
<td>R22 FKW</td>
<td>Kältetemittel FKW</td>
<td>557</td>
<td>1213</td>
<td>0.1</td>
<td>-150…+90 x</td>
<td>x</td>
</tr>
<tr>
<td>BP Transcal LT</td>
<td>Thermalöl</td>
<td>1365</td>
<td>876</td>
<td>20</td>
<td>-20…+260 x</td>
<td>x</td>
</tr>
<tr>
<td>BP Transcal N</td>
<td>Thermalöl</td>
<td>1365</td>
<td>876</td>
<td>94</td>
<td>0…320 x</td>
<td>x</td>
</tr>
<tr>
<td>Shell Thermia B</td>
<td>Thermalöl</td>
<td>1365</td>
<td>863</td>
<td>89</td>
<td>0…310 x</td>
<td>x</td>
</tr>
<tr>
<td>Mobiltherm 594</td>
<td>Thermalöl</td>
<td>1365</td>
<td>873</td>
<td>7.5</td>
<td>-44…+260 x</td>
<td>x</td>
</tr>
<tr>
<td>Mobiltherm 603</td>
<td>Thermalöl</td>
<td>1365</td>
<td>859</td>
<td>55</td>
<td>0…320 x</td>
<td>x</td>
</tr>
<tr>
<td>Benzin</td>
<td>Kohlenwasserstoff mit 58 °API</td>
<td>1252</td>
<td>741</td>
<td>1.1</td>
<td>-50…+450</td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>Kohlenwasserstoff mit 38 °API</td>
<td>1380</td>
<td>831</td>
<td>2.2</td>
<td>-50…+450</td>
<td></td>
</tr>
<tr>
<td>Jet A1</td>
<td>Kohlenwasserstoff mit 44 °API</td>
<td>1358</td>
<td>821</td>
<td>1.7</td>
<td>-50…+450</td>
<td></td>
</tr>
</tbody>
</table>

(1) Wärmestromkoeffizient im Fluiddatensatz enthalten
C.3.2 Stoffgemische mit veränderlicher Zusammensetzung

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Erklärung</th>
<th>Parametrierung (1)</th>
<th>Schallgeschwindigkeit [m/s]</th>
<th>Dichte [g/cm³]</th>
<th>kinematische Viskosität [mm²/s]</th>
<th>Einsatzbereich</th>
<th>WMM (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycol/H₂O</td>
<td>Ethyenglykol</td>
<td>Glykolanteil</td>
<td>1482…1710</td>
<td>999…1132</td>
<td>1…23</td>
<td>-30…+150 °C 0…100 %</td>
<td>x</td>
</tr>
<tr>
<td>Erdölprodukt</td>
<td>Kohlenwasserstoff</td>
<td>API gravity</td>
<td>530…1800</td>
<td>440…1130</td>
<td>1…> 400</td>
<td>-50…+450 °C -10…+200 °API</td>
<td></td>
</tr>
<tr>
<td>Schmierstoff</td>
<td>Schmierstoff auf Kohlenwasserstoffbasis, kinematische Viskosität bei 40 °C</td>
<td>Viskositätsgrad (VG)</td>
<td>1433…1485</td>
<td>871…923</td>
<td>1…> 400</td>
<td>-40…+300 °C 1…1500 VG</td>
<td></td>
</tr>
<tr>
<td>Seewasser</td>
<td>Salinität (S in g/kg)</td>
<td></td>
<td>1482…1840</td>
<td>999…1230</td>
<td>1…1.3</td>
<td>-30…+150 °C 0…300 g/kg</td>
<td>x</td>
</tr>
<tr>
<td>Schwefelsäure/Wassermisch</td>
<td>Schwefelsäure/Wassergemisch</td>
<td></td>
<td>1280…1560</td>
<td>999…1907</td>
<td>1…12</td>
<td>-20…+250 °C 0…100 %</td>
<td></td>
</tr>
<tr>
<td>Salzsäure/Salzwassergemisch</td>
<td>Salzsaure-Wassergemisch</td>
<td></td>
<td>1482…1527</td>
<td>999…1256</td>
<td>1…1.5</td>
<td>-20…+150 °C 0…50 %</td>
<td></td>
</tr>
<tr>
<td>Salpetersäure/Wassergemisch</td>
<td>Salpetersäure-Wassergemisch</td>
<td></td>
<td>1286…1590</td>
<td>999…1554</td>
<td>1…2.4</td>
<td>-20…+150 °C 0…100 %</td>
<td></td>
</tr>
<tr>
<td>Flusssäure/Wassergemisch</td>
<td>Flusssäure-Wassergemisch</td>
<td></td>
<td>804…1482</td>
<td>999…1195</td>
<td>0.5…1</td>
<td>-20…+105 °C 0…100 %</td>
<td></td>
</tr>
<tr>
<td>Natronlauge/Natronlauge-Wassergemisch</td>
<td>Natronlaugeanteil</td>
<td></td>
<td>1482…2563</td>
<td>999…1666</td>
<td>1…265</td>
<td>-10…+200 °C 0…65 %</td>
<td></td>
</tr>
</tbody>
</table>

(1) im Programmzweig Parameter
(2) Wärmestromkoeffizient im Fluiddatensatz enthalten
C.4 Eigenschaften von Wasser bei 1 bar und bei Sättigungsdruck

<table>
<thead>
<tr>
<th>Fluidtemperatur [°C]</th>
<th>Fluiddruck [bar]</th>
<th>Schallgeschwindigkeit [m/s]</th>
<th>Dichte [kg/m³]</th>
<th>spezifische Wärme (1) [kJ/kg/K⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.013</td>
<td>1402.9</td>
<td>999.8</td>
<td>4.219</td>
</tr>
<tr>
<td>10</td>
<td>1.013</td>
<td>1447.3</td>
<td>999.7</td>
<td>4.195</td>
</tr>
<tr>
<td>20</td>
<td>1.013</td>
<td>1482.3</td>
<td>998.2</td>
<td>4.184</td>
</tr>
<tr>
<td>30</td>
<td>1.013</td>
<td>1509.2</td>
<td>995.6</td>
<td>4.180</td>
</tr>
<tr>
<td>40</td>
<td>1.013</td>
<td>1528.9</td>
<td>992.2</td>
<td>4.179</td>
</tr>
<tr>
<td>50</td>
<td>1.013</td>
<td>1542.6</td>
<td>988.0</td>
<td>4.181</td>
</tr>
<tr>
<td>60</td>
<td>1.013</td>
<td>1551.0</td>
<td>983.2</td>
<td>4.185</td>
</tr>
<tr>
<td>70</td>
<td>1.013</td>
<td>1554.7</td>
<td>977.8</td>
<td>4.190</td>
</tr>
<tr>
<td>80</td>
<td>1.013</td>
<td>1554.4</td>
<td>971.8</td>
<td>4.197</td>
</tr>
<tr>
<td>90</td>
<td>1.013</td>
<td>1550.5</td>
<td>965.3</td>
<td>4.205</td>
</tr>
<tr>
<td>100</td>
<td>1.013</td>
<td>1543.2</td>
<td>958.3</td>
<td>4.216</td>
</tr>
<tr>
<td>120</td>
<td>1.985</td>
<td>1519.9</td>
<td>943.1</td>
<td>4.244</td>
</tr>
<tr>
<td>140</td>
<td>3.615</td>
<td>1486.2</td>
<td>926.1</td>
<td>4.283</td>
</tr>
<tr>
<td>160</td>
<td>6.182</td>
<td>1443.2</td>
<td>907.4</td>
<td>4.335</td>
</tr>
<tr>
<td>180</td>
<td>10.03</td>
<td>1391.7</td>
<td>887.0</td>
<td>4.405</td>
</tr>
<tr>
<td>200</td>
<td>15.55</td>
<td>1332.1</td>
<td>864.7</td>
<td>4.496</td>
</tr>
<tr>
<td>220</td>
<td>23.20</td>
<td>1264.5</td>
<td>840.2</td>
<td>4.615</td>
</tr>
<tr>
<td>240</td>
<td>33.47</td>
<td>1189.0</td>
<td>813.4</td>
<td>4.772</td>
</tr>
<tr>
<td>260</td>
<td>46.92</td>
<td>1105.3</td>
<td>783.6</td>
<td>4.986</td>
</tr>
<tr>
<td>280</td>
<td>64.17</td>
<td>1012.6</td>
<td>750.3</td>
<td>5.289</td>
</tr>
<tr>
<td>300</td>
<td>85.88</td>
<td>909.40</td>
<td>712.1</td>
<td>5.750</td>
</tr>
<tr>
<td>320</td>
<td>112.8</td>
<td>793.16</td>
<td>667.1</td>
<td>6.537</td>
</tr>
<tr>
<td>340</td>
<td>146.0</td>
<td>658.27</td>
<td>610.7</td>
<td>8.208</td>
</tr>
<tr>
<td>360</td>
<td>186.7</td>
<td>479.74</td>
<td>527.6</td>
<td>15.00</td>
</tr>
<tr>
<td>373.946</td>
<td>220.640</td>
<td>72.356</td>
<td>322.0</td>
<td>∞</td>
</tr>
</tbody>
</table>

(1) bei konstantem Druck
D Rechtliche Informationen – Open-Source-Lizenzen

Die Software dieses Produkts enthält folgende Open-Source-Software, welche der Apache-License Version 2.0, vom Januar 2004 unterstellt ist:

1. uC-TCP-IP
https://github.com/weston-embedded/uC-TCP-IP/tree/v3.06.01
https://github.com/weston-embedded/uC-TCP-IP/blob/v3.06.01/LICENSE
https://github.com/weston-embedded/uC-TCP-IP/blob/v3.06.01/NOTICE

ATTENTION ALL USERS OF THIS REPOSITORY:
The original work found in this repository is provided by Silicon Labs under the Apache License, Version 2.0. Any third party may contribute derivative works to the original work in which modifications are clearly identified as being licensed under:

1. the Apache License, Version 2.0 or a compatible open source license; or
2. under a proprietary license with a copy of such license deposited.

All posted derivative works must clearly identify which license choice has been selected.

No such posted derivative works will be considered to be a “Contribution” under the Apache License, Version 2.0.

SILICON LABS MAKES NO WARRANTY WITH RESPECT TO ALL POSTED THIRD PARTY CONTENT AND DISCLAIMS ALL OTHER WARRANTIES OR LIABILITIES, INCLUDING ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, OWNERSHIP, NON-INFRINGEMENT, AND NON-MISAPPROPRIATION.

In the event a derivative work is desired to be submitted to Silicon Labs as a “Contribution” under the Apache License, Version 2.0, a “Contributor” must give written email notice to micrium@weston-embedded.com. Unless an email response in the affirmative to accept the derivative work as a “Contribution”, such email submission should be considered to have not been incorporated into the original work.

2. uC-Common
https://github.com/weston-embedded/uC-Common/tree/v1.02.01
https://github.com/weston-embedded/uC-Common/blob/v1.02.01/LICENSE
https://github.com/weston-embedded/uC-Common/blob/v1.02.01/NOTICE

ATTENTION ALL USERS OF THIS REPOSITORY:
The original work found in this repository is provided by Silicon Labs under the Apache License, Version 2.0. Any third party may contribute derivative works to the original work in which modifications are clearly identified as being licensed under:

1. the Apache License, Version 2.0 or a compatible open source license; or
2. under a proprietary license with a copy of such license deposited.

All posted derivative works must clearly identify which license choice has been selected.

No such posted derivative works will be considered to be a “Contribution” under the Apache License, Version 2.0.

SILICON LABS MAKES NO WARRANTY WITH RESPECT TO ALL POSTED THIRD PARTY CONTENT AND DISCLAIMS ALL OTHER WARRANTIES OR LIABILITIES, INCLUDING ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, OWNERSHIP, NON-INFRINGEMENT, AND NON-MISAPPROPRIATION.

In the event a derivative work is desired to be submitted to Silicon Labs as a “Contribution” under the Apache License, Version 2.0, a “Contributor” must give written email notice to micrium@weston-embedded.com. Unless an email response in the affirmative to accept the derivative work as a “Contribution”, such email submission should be considered to have not been incorporated into the original work.
3. uC-DHPC
https://github.com/weston-embedded/uC-DHPC/tree/v2.11.01
https://github.com/weston-embedded/uC-DHPC/blob/v2.11.01/LICENSE
https://github.com/weston-embedded/uC-DHPC/blob/v2.11.01/NOTICE

ATTENTION ALL USERS OF THIS REPOSITORY:
The original work found in this repository is provided by Silicon Labs under the Apache License, Version 2.0.
Any third party may contribute derivative works to the original work in which modifications are clearly identified as being licensed under:
(1) the Apache License, Version 2.0 or a compatible open source license; or
(2) under a proprietary license with a copy of such license deposited.
All posted derivative works must clearly identify which license choice has been elected.
No such posted derivative works will be considered to be a “Contribution” under the Apache License, Version 2.0.

4. uC-LIB
https://github.com/weston-embedded/uC-LIB/tree/v1.39.01
https://github.com/weston-embedded/uC-LIB/blob/v1.39.01/LICENSE
https://github.com/weston-embedded/uC-LIB/blob/v1.39.01/NOTICE

ATTENTION ALL USERS OF THIS REPOSITORY:
The original work found in this repository is provided by Silicon Labs under the Apache License, Version 2.0.
Any third party may contribute derivative works to the original work in which modifications are clearly identified as being licensed under:
(1) the Apache License, Version 2.0 or a compatible open source license; or
(2) under a proprietary license with a copy of such license deposited.
All posted derivative works must clearly identify which license choice has been elected.
No such posted derivative works will be considered to be a “Contribution” under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50 %) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.

214
Anhang

D Rechtliche Informationen – Open-Source-Lizenzen

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement You may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NONINFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.
E Konformitätserklärungen
EU-Konformitätserklärung nach Niederspannungsrichtlinie

FLEXIM Flexible Industriemesstechnik GmbH
Boxberger Straße 4
12681 Berlin
Deutschland

erklärt als Hersteller in alleiniger Verantwortung, dass das/die Ultraschall-Durchflussmessgerät/e

FLUXUS a736
a = F, G, H

den einschlägigen EU-Verordnungen und -Richtlinien, einschließlich der zum Zeitpunkt der Erklärung geltenden Änderungen, entspricht/entsprechen. Es wurden die folgenden harmonisierten EU-Normen für die Erklärung der Konformität zugrunde gelegt:

EU-Richtlinie 2014/35/EU (Niederspannungsrichtlinie) über die Bereitstellung elektrischer Betriebssmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen auf dem Markt
Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte
Teil 1: Allgemeine Anforderungen
EN IEC 61010-2-030:2021 + A11:2021
Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte
Teil 2-030: Besondere Bestimmungen für Prüf- und Messstromkreise

EU-Richtlinie 2014/30/EU (EMV-Richtlinie) über die elektromagnetische Verträglichkeit
EN 61326-1:2013
Elektrische Mess-, Steuer-, Regel- und Laborgeräte – EMV-Anforderungen
Teil 1: Allgemeine Anforderungen

EU-Richtlinie 2011/65/EU (RoHS-Richtlinie) zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten
EN IEC 63000:2018
Technische Dokumentation zur Beurteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefährlicher Stoffe

FLEXIM GmbH
Unterzeichnet für und im Namen von
Berlin, 2022-12-01
Ort, Datum

Jens Hilpert
Geschäftsführer